Nav: Home

Stunting cell 'antennae' could make cancer drugs work again

June 05, 2018

Scientists have uncovered a completely new way to make cancers sensitive to treatment - by targeting antenna-like structures on cells.

Their study found that drug-resistant cancer cells have more and longer antennae than those which are killed by treatment.

Blocking the growth of antennae reactivated a range of cancer treatments that had stopped working, the team at The Institute of Cancer Research, London, found.

The researchers identified changes in cellular antennae known as cilia in different types of cancer cells with resistance to various types of drugs. That suggests that targeting cilia could be a universal way to resensitise cancers to treatment.

The study is published today (Tuesday) in the journal Cell Reports, and was supported by funders including Sarcoma UK, the Wellcome Trust and Cancer Research UK.

Scientists at The Institute of Cancer Research (ICR) - a research institution and charity - studied cells from lung cancer and a soft-tissue cancer called sarcoma in the lab.

The researchers observed that cells that had become resistant to cancer drugs had more, longer cilia - tiny 'antennae' that help cells sense chemical signals.

They then blocked the growth of cilia in drug-resistant cancer cells, and found that their sensitivity to treatment had been restored. Exposure to drugs killed between 35 and 60 per cent of formerly resistant cancer cells - nearly doubling the effectiveness of cancer drugs.

For example, in lung cancer cells without cilia, only 39 per cent of cells survived treatment with a drug called erlotinib, compared with 72 per cent of cells that still had cilia.

Blocking important signalling molecules in cilia also restored cells' response to cancer drugs. Lengthening cilia had the opposite effect, causing cells that previously had responded to treatment to develop resistance.

Cancer cells can evolve in many different ways to become resistant to treatment - for example, changing so that they no longer rely on the molecular weaknesses targeted by the drug.

The researchers believe that the role of cilia in drug resistance is largely linked to important cell signalling molecules they contain.

Next, they aim to study molecular networks in cilia, and the effect of changes in the length and stability of the structures, to better understand their role in cancer drug resistance.

Study leader Dr Barbara Tanos, ICR Fellow in Cancer Therapeutics at The Institute of Cancer Research, London, said:

"We found that small, antenna-like cell structures called cilia play a key role as cancer cells develop resistance to treatment.

"We believe that cilia could help cancer cells become resistant to a wide range of drugs - and therefore that targeting cilia could be a universal way of stripping cancers of their defences.

"Next, we aim to explore changes to cilia in more depth, to build a more detailed picture of how they are linked to cancer drug resistance and how they might be targeted to restore sensitivity to treatment."

Professor Paul Workman, Chief Executive of The Institute of Cancer Research, London, said:

"Combating drug resistance is one of the most important challenges in cancer research today. We urgently need a better understanding of the underlying biology that enables cancer cells to evolve and evade treatment.

"This new study has revealed an intriguing link between drug resistance and cilia - tiny, antenna-like structures that are present on the surface of all cells. The research could open the door to new approaches for attacking cancers, which might block their escape routes from existing treatments."
-end-
Notes to editors

For more information please contact Sarah Wells in the ICR press office on 020 7153 5582 or sarah.wells@icr.ac.uk. For enquiries out of hours, please call 07595 963 613.

The Institute of Cancer Research, London, is one of the world's most influential cancer research organisations.

Scientists and clinicians at The Institute of Cancer Research (ICR) are working every day to make a real impact on cancer patients' lives. Through its unique partnership with The Royal Marsden NHS Foundation Trust and 'bench-to-bedside' approach, the ICR is able to create and deliver results in a way that other institutions cannot. Together the two organisations are rated in the top four centres for cancer research and treatment globally.

The ICR has an outstanding record of achievement dating back more than 100 years. It provided the first convincing evidence that DNA damage is the basic cause of cancer, laying the foundation for the now universally accepted idea that cancer is a genetic disease. Today it is a world leader at identifying cancer-related genes and discovering new targeted drugs for personalised cancer treatment.

A college of the University of London, the ICR is the UK's top-ranked academic institution for research quality, and provides postgraduate higher education of international distinction. It has charitable status and relies on support from partner organisations, charities and the general public.

The ICR's mission is to make the discoveries that defeat cancer. For more information visit http://www.icr.ac.uk

Institute of Cancer Research

Related Lung Cancer Articles:

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Lung transplant patients face elevated lung cancer risk
In an American Journal of Transplantation study, lung cancer risk was increased after lung transplantation, especially in the native (non-transplanted) lung of single lung transplant recipients.
Proposed cancer treatment may boost lung cancer stem cells, study warns
Epigenetic therapies -- targeting enzymes that alter what genes are turned on or off in a cell -- are of growing interest in the cancer field as a way of making a cancer less aggressive or less malignant.
Are you at risk for lung cancer?
This question isn't only for people who've smoked a lot.
Better equipped in the fight against lung cancer
Lung cancer is the third most common type of cancer in Germany and the disease affects both men and women.
New liquid biopsy-based cancer model reveals data on deadly lung cancer
Small cell lung cancer (SCLC) accounts for 14 percent of all lung cancers and is often rapidly resistant to chemotherapy resulting in poor clinical outcomes.
Cancer drug leads to 'drastic decrease' in HIV infection in lung cancer patient
Doctors in France have found the first evidence that a cancer drug may be able to eradicate HIV-infected cells in humans.
Air pollution is associated with cancer mortality beyond lung cancer
A large scale epidemiological study associates some air pollutants with kidney, bladder and colorectal cancer death.
Free lung-cancer screening in the Augusta area finds more than double the cancer rate of previous screenings
The first year of free lung cancer screening in the Augusta, Ga., area found more than double the rate seen in a previous large, national study as well as a Massachusetts-based screening for this No.
Lung cancer may go undetected in kidney cancer patients
Could lung cancer be hiding in kidney cancer patients? Researchers with the Harold C.
More Lung Cancer News and Lung Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.