Nav: Home

CWRU School of Medicine researchers create first artificial human prion

June 05, 2018

Case Western Reserve University School of Medicine researchers have synthesized the first artificial human prion, a dramatic development in efforts to combat a devastating form of brain disease that has so far eluded treatment and a cure. The new findings are published in Nature Communications.

Prions are proteins that have folded incorrectly. They can bind to neighboring normal proteins in the brain, triggering a domino effect that causes microscopic holes, turning brains into sponge, resulting in progressive deterioration, dementia, and certain death. There are numerous types of prion diseases in humans; the most common being Creutzfeldt-Jakob disease (CJD). Why and how human prion mis-folding occurs has been a mystery that the Case Western Reserve investigative team may have solved with its new findings.

"This accomplishment represents a watershed," said Jiri G. Safar, MD, professor of pathology and neurology at Case Western Reserve School of Medicine and the study's lead author. "Until now our understanding of prions in the brain has been limited. Being able to generate synthetic human prions in a test tube as we have done will enable us to achieve a much richer understanding of prion structure and replication. This is crucial for developing inhibitors of their replication and propagation throughout the brain, which is essential for halting prion-based brain disease."

Researchers already know how to make some forms of laboratory-rodent prions, but until now, none of these was infectious to humans as judged in experiments with humanized mice models. In their new paper, the researchers describe their success in synthesizing a new, highly destructive human prion from a genetically engineered human prion protein expressed in E. coli bacteria. They also discovered an essential cofactor known as Ganglioside GM1--a cell molecule which modulates cell-to-cell signaling--in triggering infectious replication and transmission of prion-based disease. This finding raises the hope for new therapeutic strategies using analog medications with inhibitory or blocking effect on human prion replication.

The researchers also demonstrated that the replication rate, infectivity, and targeting of specific brain structures by synthetic and naturally occurring prions is determined not by the presence of mis-folded prions per se but by particular variations and modifications in the molecule's structure--specifically in an area known as the C terminal domain--which control the growth rate of infectious prions. "Our findings explain at the structural level the emergence of new human prions and provide a basis for understanding how seemingly subtle differences in mis-folded protein structure and modifications affect their transmissibility, cellular targeting, and thus manifestation in humans," said Safar.

Currently, there is no treatment or cure for CJD. Symptoms are similar to those of Alzheimer's disease, sometimes leading to mis-diagnosis. These include dementia, memory loss, trouble walking, and impaired vision. The occurrence of human prion diseases peaks at ages 60-65, accounting for approximately 1 in 10,000 deaths worldwide. Despite their relative rarity, human prion diseases have gained considerable notoriety and relevance because they display characteristics of neurodegenerative diseases but are infectious. Furthermore, they can spread not only between humans but also from animals to humans by an infectious agent that is highly resistant to inactivation.

Previous prion studies were carried out with laboratory nonhuman prions on mouse and hamster models. While this approach was useful for a general understanding of prion-triggered disease, human prions are different from these strains in both structure and mechanism of replication. Several recent therapeutic trials of human prion diseases have failed. Although these disappointing results may have occurred for multiple reasons, they demonstrate that the results from animal or cellular prion models do not automatically apply to human prions. Creating artificial human prions will allow researchers to engage in an apples-to-apples study process, opening the door to more complete insights into how prions unleash their destructive force, potentially resulting in medications that can stop the disease in its tracks. And since Parkinson's and Alzheimer's diseases spread through the brain in similar fashion as CJD, new inroads against these conditions are possible as well.

Safar was lead author of a pioneering paper on a "prion shape detector" published in Nature Medicine in 1998, which received extensive global coverage and has been highly quoted ever since. The current paper in Nature Communications is a continuation of this ground-breaking research.
-end-
Funding for the current research was provided by the US Centers for Disease Control and Prevention, National Institutes of Health, and the Charles S. Britton Fund.

Kim, C., et al. "Artificial strain of human prions created in vitro." Nature Communications.
doi:10.1038/s41467-018-04584-z

For more information about Case Western Reserve University School of Medicine, please visit case.edu/medicine.

Case Western Reserve University

Related Neurodegenerative Diseases Articles:

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
New family of molecules to join altered receptors in neurodegenerative diseases
An article published in the Journal of Medicinal Chemistry shows a new family of molecules with high affinity to join imidazoline receptors, which are altered in the brain of those patients with neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's.
Examining diagnoses of stress-related disorders, risk of neurodegenerative diseases
Researchers investigated how stress-related disorders (such as posttraumatic stress disorder, adjustment disorder and stress reactions) were associated with risk for neurodegenerative diseases, including Alzheimer and Parkinson disease and amyotrophic lateral sclerosis (ALS), using data from national health registers in Sweden.
Toxic protein, linked to Alzheimer's and neurodegenerative diseases, exposed in new detail
The protein tau has long been implicated in Alzheimer's and a host of other debilitating brain diseases.
Study uncovers unexpected connection between gliomas, neurodegenerative diseases
New basic science and clinical research identifies TAU, the same protein studied in the development of Alzheimer's, as a biomarker for glioma development.
Neurodegenerative diseases may be caused by transportation failures inside neurons
Protein clumps are routinely found in the brains of patients with neurodegenerative diseases.
Study suggests a protein could play key role in neurodegenerative diseases
Research led by Queen Mary University of London and the University of Seville around one protein's role in regulating brain inflammation could improve our understanding of neurodegenerative diseases.
Beyond finding a gene: Same repeated stretch of DNA in three neurodegenerative diseases
Four different rare diseases are all caused by the same short segment of DNA repeated too many times, a mutation researchers call noncoding expanded tandem repeats.
Protein complex may help prevent neurodegenerative diseases
The protein complex NAC in the cell helps to prevent the aggregration of proteins associated with several neurodegenerative diseases.
More Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.