Nav: Home

Nutrient pollution makes ocean acidification worse for coral reefs

June 05, 2018

A study published recently by a team of researchers, alumni and students from the University of Hawai'i at Manoa School of Ocean and Earth Science and Technology (SOEST) showed that local impacts of humans--nutrient pollution from activities on land--may accelerate the negative impacts of global ocean acidification on coral reefs.

Coral reefs provide critical ecosystem services including food security and shoreline protection to coastal communities. These services largely depend on the highly complex three-dimensional structure of coral reefs. For coral reefs to thrive, calcifying organisms, such as corals, must build the reef faster than bioeroding organisms and natural dissolution break the reef down.

"There is a long history of examining the impacts of nutrient pollution and ocean acidification on coral reefs," said lead author Nyssa Silbiger, assistant professor at California State University, Northridge and alumna of the UH Manoa Hawai'i Institute of Marine Biology (HIMB) at SOEST. "However, little is known about how these two stressors interact and influence coral reef ecosystem functioning."

Prior research showed that stressors associated with human-derived carbon dioxide (CO2) emissions, such as ocean acidification, are shifting coral reefs towards net loss, which would lead to the loss of the three-dimensional framework in the future. The new study in Proceedings of the Royal Society B: Biological Sciences showed that nutrient pollution could make coral reefs more vulnerable to ocean acidification and accelerate the predicted shift from net growth to overall loss.

At HIMB, the team used a state-of-the-art system in which they continuously added nutrients (nitrate and phosphate) to aquariums housing different members of the coral reef community, including corals, seaweeds, dead reef rubble, or sand. They then compared this with an experiment mimicking natural systems with a mixed community containing all four constituents and measured critical "ecosystem functions" of coral reef communities: calcification, dissolution, photosynthesis, and respiration.

"We showed that nutrient pollution decreases overall reef growth and disrupts the natural chemical dynamics on coral reefs," said Silbiger. "In nutrient polluted seawater, calcifiers were less able to capitalize on the dissolved compounds that make up the building blocks of coral reefs. Nutrient pollution reduced calcification rates--a measure of how quickly reef builders are creating the skeletal framework--nearly tenfold in waters that would otherwise promote reef growth, and enhanced both skeletal dissolution and the growth of seaweed competitors."

Nutrients from fertilizers are often thought to impact reefs indirectly, for example by giving an advantage to weedy seaweeds that can overtake reefs, an observation reinforced by this study.

"These 'phase shifts' to algal reefs are occurring globally, causing a major change in how reefs function," said co-author Craig Nelson, faculty at UH Manoa in Oceanography and Sea Grant. "But until now we never quantified how nutrient pollution can directly reduce corals' ability to build reef structure."

What this work revealed is that the nutrients also change the local pH environment by compromising how corals and other reef organisms breathe, which influences the chemistry of the reef.

"The relationship between nutrients and reef metabolism exacerbates pH change, which can make the whole system more susceptible to global threats such as ocean acidification," said co-author Hollie Putnam, assistant professor at University of Rhode Island and alumna of HIMB.

"Nutrient pollution negatively effects reef growth both directly and indirectly, creating a double whammy for coral reefs already stressed by ocean acidification around the world," said co-author Megan Donahue, researcher at HIMB. "Our data indicate that both local management efforts such as reducing nutrient run-off and seepage into groundwater, and global actions, such as reducing global carbon dioxide emissions, are required to protect reefs from rapidly declining."

In the future, the research team will focus on how other reef constituents such as fishes interact with these processes to impact coral reef ecosystem functioning, because reefs are complex networks and these interactions are critical to resilience.
-end-


University of Hawaii at Manoa

Related Coral Reefs Articles:

A brave new world for coral reefs
It is not too late to save coral reefs, but we must act now.
Regular coral larvae supply from neighboring reefs helps degraded reefs recover
For reefs facing huge challenges, more coral larvae doesn't necessarily translate to increased rates of coral recovery on degraded reefs, a new Queensland study has showed.
Potential for Saudi Arabian coral reefs to shine
Careful marine management and stricter fishing laws could enable Saudi Arabia's coral reefs to thrive.
New coral bleaching database to help predict fate of global reefs
A UBC-led research team has developed a new global coral bleaching database that could help scientists predict future bleaching events.
Fish social lives may be key to saving coral reefs
Fish provide a critical service for coral reefs by eating algae that can kill coral and dominate reefs if left unchecked.
Land-based microbes may be invading and harming coral reefs
A new study suggests that coral reefs -- already under existential threat from global warming -- may be undergoing further damage from invading bacteria and fungi coming from land-based sources, such as outfall from sewage treatment plants and coastal inlets.
Dead zones may threaten coral reefs worldwide
Dead zones affect dozens of coral reefs around the world and threaten hundreds more according to a new study by Smithsonian scientists published in Proceedings of the National Academy of Sciences.
Deep reefs unlikely to save shallow coral reefs
Often highlighted as important ecological refuges, deep sections of coral reefs (30-60 m depth) can offer protection from the full force of climate change-related impacts, such as intensifying storms and warm-water bleaching.
Coral reefs grow faster and healthier when parrotfish are abundant
A new study by Smithsonian scientists and colleagues that reveals 3,000 years of change in reefs in the western Caribbean provides long-term, compelling evidence that parrotfish, which eat algae that can smother corals, are vital to coral-reef growth and health.
Rising CO2 threatens coral and people who use reefs
Damage to coral reefs from ocean acidification and sea surface temperature rise will be worst at just the spots where human dependence on reefs is highest, according to a new analysis appearing in PLOS ONE.

Related Coral Reefs Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...