Nav: Home

Bridging the gap between human and animal communication

June 05, 2018

Language -- one of the most distinctive human traits -- remains a 'mystery' or even a 'problem' for evolutionary theory. It is underpinned by cooperative turn-taking, which consists of reciprocal exchanges of alternating, short and flexible turns between two or more interactants. Turn-taking is used universally across languages and cultures, and shows some signs of phylogenetic parallels in all clades of the primate lineage. Hence, turn-taking has been suggested as an ancient mechanism of the language system bridging the existing gap between the articulate human species and our inarticulate primate cousins. But what exactly do we know about turn-taking in nonhuman primates and other animal taxa?

The researchers reviewed the existing literature by focusing on turn-taking phenomena in birds, mammals, insects and anurans. Simone Pika from the Department of Primatology at the Max Planck Institute of Evolutionary Anthropology, one of the initiators and first author of the study. concludes: "Direct comparisons of turn-taking skills of nonhuman animals in relation to language origins are highly constrained by lack of data, the application of different terms, methodological designs, and study environments".

In addition, research studies have been biased toward birds and vocal interactions and mainly concerned a single key element of full-blown human turn-taking only, the time window. The time-window refers to the gap between an initiating turn and the response turn. It varies in human spoken conversation from 0-500 milliseconds and across nonhuman animal taxa from <50 milliseconds (e.g. songs of plain-tailed wrens) to 5,000 milliseconds (e.g. phee-call exchanges of common marmosets). Research studies on other turn-taking systems --for example gestural interactions of bonobos and chimpanzees -- are currently relatively rare, but „represent, due to the application of key elements characterizing human full-blown turn-taking, the most promising avenue to tackle the question whether turn-taking played a key role in language evolution", says Simone Pika.

The researchers propose a new framework, which aims to enable comparative research by focusing on four key elements characterizing human conversations: A) Flexibility of turn-taking organization. B) Who is taking the next turn? C) When do response turns occur? D) What should the next turn do? The researchers suggest to apply this new comparative framework to carefully chosen representatives of the more than 50 genera of primates and to characterize the existing turn-taking phenotypes. They also emphasize to pay more attention to related phenomena due to convergent evolution.

For instance, recent studies on language competence and cognitive skills of parrots and corvids have put into question the assumed simple inverse correlation between language-readiness and genetic distance from humans. This new field of comparative turn-taking will thus shed light on one of the 'hardest' problems in science by testing whether turn-taking had profound downstream effects on human culture and cooperation, and laid the foundation for the evolution of language.
-end-


Max Planck Institute for Evolutionary Anthropology

Related Language Articles:

Why the language-ready brain is so complex
In a review article published in Science, Peter Hagoort, professor of Cognitive Neuroscience at Radboud University and director of the Max Planck Institute for Psycholinguistics, argues for a new model of language, involving the interaction of multiple brain networks.
Do as i say: Translating language into movement
Researchers at Carnegie Mellon University have developed a computer model that can translate text describing physical movements directly into simple computer-generated animations, a first step toward someday generating movies directly from scripts.
Learning language
When it comes to learning a language, the left side of the brain has traditionally been considered the hub of language processing.
Learning a second alphabet for a first language
A part of the brain that maps letters to sounds can acquire a second, visually distinct alphabet for the same language, according to a study of English speakers published in eNeuro.
Sign language reveals the hidden logical structure, and limitations, of spoken language
Sign languages can help reveal hidden aspects of the logical structure of spoken language, but they also highlight its limitations because speech lacks the rich iconic resources that sign language uses on top of its sophisticated grammar.
More Language News and Language Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...