Nav: Home

Augmenting microgrid technology: A new way for reliable power

June 05, 2019

A group of American and Chinese researchers has designed and tested a microgrid system that is both robust and reliable - and therefore capable of delivering energy safely and without interruptions. This is particularly important during harsh weather conditions and times of peak consumption and is critical for economic growth.

The research was published in the March issue of IEEE/CAA Journal of Automatica Sinica (JAS), a joint publication of the IEEE and the Chinese Association of Automation.

A microgrid, or small-scale electric grid, is a network of nodes that provide, store and use energy. Electricity moves from each of the locations within the microgrid in the form of electric current, which can travel in two modes - either in just one direction, in which case it is called direct current (DC) or in several different directions that change periodically, also referred to as alternating current (AC). However, electrical sources that deliver electricity in just one direction are vulnerable to sudden changes, such as changes in load that can result in a voltage overload.

"In order to create parallel DC microgrids that function safely and efficiently, focus should be placed on two things. One is the regulation of voltage and one is the amount of electricity that is shared among users in a network," says Wenxin Liu, PhD, corresponding author and Associate Professor with the Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA.

Specific to this paper, the researchers have enhanced a microgrid with a single-DC source in such a way that it functions as a safe and reliable electricity source by aligning several energy sources in parallel and basing the microgrid on a decentralized control algorithm. Decentralized control - also called distributed control - means that there is not a single point within the grid where the decision is made. Rather, each point within the grid makes a decision on its own and the resulting output is the aggregate response of all of the nodes.

With this setup, the researchers have designed a microgrid that delivers a large amount of electricity while overcoming the aforementioned burdens of system overload and shutdown. Put simply, they have found a way deliver a constant and uninterrupted stream of high amounts of electricity safely.

"The parallel operation of distribution generators offers several advantages including expandability, reliability, efficiency, and ease of maintenance. This single-energy-source topology has a wide range of applications within electrical power systems of avionics, automotive, telecom, marine, and rural areas," says Liu.
Fulltext of the paper is available:

IEEE/CAA Journal of Automatica Sinica aims to publish high-quality, high-interest, far-reaching research achievements globally, and provide an international forum for the presentation of original ideas and recent results related to all aspects of automation. Researchers (including globally highly cited scholars) from institutions all over the world, such as NASA Ames Research Center, MIT, Yale University, Stanford University, Princeton University, select to share their research with a large audience through JAS.

We are pleased to announce IEEE/CAA Journal of Automatica Sinica's latest CiteScore is 5.31, ranked among top 9% (22/232) in the category of "Control and Systems Engineering", and top 10% (27/269?20/189) both in the categories of "Information System" and "Artificial Intelligence". JAS has been in the 1st quantile (Q1) in all three categories it belongs to.

Why publish with us: Fast and high quality peer review; Simple and effective online submission system; Widest possible global dissemination of your research; Indexed by IEEE, ESCI, EI, Scopus, Inspec. JAS papers can be found at or

Chinese Association of Automation

Related Electricity Articles:

Microbial fuel cell converts methane to electricity
Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere.
Exploring the conversion of heat to electricity in single molecules
Researchers at Osaka University investigated the influence of the geometry of single-molecule devices on their ability to produce electricity from heat.
Macrophages conduct electricity, help heart to beat
Macrophages have a previously unrecognized role in helping the mammalian heart beat in rhythm.
Buzzing the brain with electricity can boost working memory
Scientists have uncovered a method for improving short-term working memory, by stimulating the brain with electricity to synchronize brain waves.
Environmentally friendly, almost electricity-free solar cooling
Demand and the need for cooling are growing as the effects of climate change intensify.
1 in 5 residents overuses electricity at neighbors' expense
Household electricity use falls by more than 30 percent when residents are obliged to pay for their own personal consumption.
New approach for matching production and consumption of renewable electricity
VTT Technical Research Centre of Finland is coordinating the BALANCE project, which brings together leading European research institutes in the field of electrochemical conversion.
Electricity costs: A new way they'll surge in a warming world
Climate change is likely to increase US electricity costs over the next century by billions of dollars more than economists previously forecast, according to a new study involving a University of Michigan researcher.
Material can turn sunlight, heat and movement into electricity -- all at once
Many forms of energy surround you: sunlight, the heat in your room and even your own movements.
For this metal, electricity flows, but not the heat
Berkeley scientists have discovered that electrons in vanadium dioxide can conduct electricity without conducting heat, an exotic property in an unconventional material.

Related Electricity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...