Nav: Home

Scientists discover how hepatitis C 'ghosts' our immune system

June 05, 2019

Scientists from Trinity College Dublin have discovered how the highly infectious and sometimes deadly Hepatitis C virus (HCV) "ghosts" our immune system and remains undiagnosed in many people. They report their findings today [Wednesday June 5th] in the international FASEB journal.

HCV's main route of transmission is via infected blood but over the past 40 years it has accidentally been given to many patients across the world via infected blood products. The virus replicates particularly well in the liver, and the damage it causes makes it a leading cause of liver disease worldwide.

Even though HCV can be deadly, initial infection is rarely accompanied by any obvious clinical symptoms for reasons that have - until now - remained unknown. As a result, it often goes undiagnosed for the first 6-12 months following infection.

If left untreated HCV spreads throughout the liver, stimulating a low-level inflammatory response. Over several months, these mild responses - accompanied by subsequent liver repair - result in fibrotic scarring of the liver. The liver's main job is to filter out toxins, but during HCV infection the build-up of fibrotic, non-functioning liver tissue, results in reduced liver function. Without a fully functioning liver, one major side-effect is the build-up of toxins, often referred to as "jaundice". If patients do not realise they are infected with HCV, their first noticeable symptoms are the side-effects of liver fibrosis (such as jaundice).

While the majority of HCV infections are now treatable with new medicines, early detection would avoid the damaging progression to liver disease. Therefore, a group of scientists led by Assistant Professor in Immunology at Trinity, Nigel Stevenson, set out to understand how the virus avoids being discovered for months after infection.

HCV suppresses the immune response

Under normal circumstances, our cells communicate with each other with molecules called cytokines, which work by activating specific cascades of other molecules within our cells called signalling pathways. These cytokines and their signalling pathways trigger the expression of hundreds of molecules within our cells to increase inflammation and anti-viral activity. This immune response is capable of killing and clearing viral infections from our cells and bodies.

Uncontrolled inflammation would be dangerous, however, so to ensure our immune response to infection is appropriately regulated, several cytokine signalling pathways are controlled by immune regulators called "Suppressor Of Cytokine Signalling (SOCS)" regulators. After a period of time following an initial response, pro-inflammatory cytokine signalling pathways are shut down by SOCS.

The Trinity scientists found that HCV "ghosts" our immune response, by triggering our own SOCS regulators; a specific part of the virus is responsible for increasing a specific SOCS molecule - in both liver and immune cells.

Dr Stevenson said: "We've discovered that HCV hijacks this regulatory process by causing the expression of SOCS in our cells. By increasing the expression of SOCS, HCV basically dulls the normal immune response to viral infection. Without a strong signal our body's cells cannot then mount an effective inflammatory and anti-viral response that clears infection."

"This ability shields HCV from our body's normal, effective anti-viral immune response and creates a perfect environment in which to survive, replicate and infect other cells. Many diseases are mediated by increasing the inflammatory response to an inappropriately high level, but in this case it is the lack of adequate inflammation that enables HCV to go undiagnosed, leaving it free to rapidly replicate and infect other cells."
-end-


Trinity College Dublin

Related Immune System Articles:

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at Radiolab.org/donate.