Nav: Home

New polymer tackles PFAS pollution

June 05, 2019

The problem of cleaning up toxic polyfluorinated alkyl substances (PFAS) pollution - commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams - has been solved through the discovery of a new low-cost, safe and environmentally friendly method that removes PFAS from water.

In The US, contamination by PFAS and other so-called "forever chemicals" has been detected in foods including grocery store meats and seafoods by FDA tests, prompting calls for regulations to be applied to manmade compounds. Consistent associations between very high levels of the industrial compounds in peoples' blood and health risks have been reported but insufficient evidence has been presented to prove the compounds as the cause.

In Australia, PFAS pollution - which does not break down readily in the environment - has been a hot news item due to the extensive historical use of fire-fighting foams containing PFAS at airports and defence sites, resulting in contaminated ground water and surface water being reported in these areas.

Researchers from the Flinders University Institute for NanoScale Science and Technology have - on World Environment Day - revealed a new type of absorbent polymer, made from waste cooking oil and sulfur combined with powdered activated carbon (PAC).

While there have been few economic solutions for removing PFAS from contaminated water, the new polymer adheres to carbon in a way that prevents caking during water filtration. It works faster at PFAS uptake than the commonly used and more expensive granular activated carbon method, and it dramatically lowers the amount of dust generated during handling PAC that lowers respiratory risks faced by clean-up workers.

"We need safe, low-cost and versatile methods for removing PFAS from water, and our polymer-carbon blend is a promising step in this direction," says Flinders University's Dr Justin Chalker, co-director of the study. "The next stage for us is to test this sorbent on a commercial scale and demonstrate its ability to purify thousands of litres of water. We are also investigating methods to recycle the sorbent and destroy the PFAS."

During the testing phase, the research team was able to directly observe the self-assembly of PFOA hemi-micelles on the surface of the polymer. "This is an important fundamental discovery about how PFOA interacts with surfaces," explains Dr Chalker.

The team demonstrated the effectiveness of the polymer-carbon blend by purifying a sample of surface water obtained near a RAAF airbase. The new filter material reduced the PFAS content of this water from 150 parts per trillion (ppt) to less than 23 parts per trillion (ppt), which is well below the 70 ppt guidance values for PFAS limits in drinking water issues by the Australian Government Department of Health.

The core technology for this PFAS sorbent is protected by a provisional patent.

"Our canola oil polysulfide was found to be highly effective as a support material for powdered activated carbon, enhancing its efficiency and prospects for implementation," says Nicholas Lundquist, PhD candidate at Flinders University and first author in the ground-breaking study.

The research paper, "Polymer supported carbon for safe and effective remediation of PFOA- and PFOS-contaminated water", by Nicholas Lundquist, Martin Sweetman, Kymberley Scroggie, Max Worthington, Louisa Esdaile, Salah Alboaiji, Sally Plush, John Hayball and Justin Chalker, has been published in the published in ACS Sustainable Chemistry & Engineering (DOI:10.1021/acssuschemeng.9b01793).

This project was a collaboration funded by the South Australian Defence Innovation Partnership, with further support from industry partners Puratap and the Salisbury Council. Co-directors of the study were A/Prof Sally Plush and Prof John Hayball at UniSA and Dr Justin Chalker at Flinders University.

Flinders PhD student Nicholas Lundquist was the lead author of the study in collaboration with Research Fellow Dr Martin Sweetman of UniSA.

"This successful project has laid the groundwork for significant ongoing, collaborative research between Flinders and UniSA," says Dr Sweetman, "as well as with our two industry partners Membrane Systems Australia and Puratap."
-end-
Other key contributors to the study were several current and former members of The Flinders University Institute for NanoScale Science and technology including Kymberley Scroggie, Max Worthington, Dr Louisa Esdaile, and Salah Alboaiji.

Funding for the start of this research came from the State Government's Defence Innovation Partnership program.

Key media contacts:

Name: Dr Justin Chalker, Senior Lecturer in Synthetic Chemistry, College of Science and Engineering, Flinders University
Tel: +61 8 8201 2268
Mob: +61 416 405 951 (ideal to text first; Justin will respond around teaching times).
Email: justin.chalker@flinders.edu.au

Name: Karen Ashford, Director, Media and Communications, Flinders University
Tel: +61 8 8201 2092
Mob: +61 427 398 713

Flinders University

Related Pollution Articles:

Combatting air pollution with nature
Air pollution is composed of particles and gases that can have negative impacts on both the environment and human health.
Nature might be better than tech at reducing air pollution
Adding plants and trees to the landscapes near factories and other pollution sources could reduce air pollution by an average of 27 percent, new research suggests.
Aspirin may prevent air pollution harms
A new study is the first to report evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) like aspirin may lessen the adverse effects of air pollution exposure on lung function.
Is pollution linked to psychiatric disorders?
Researchers are increasingly studying the effects of environmental insults on psychiatric and neurological conditions, motivated by emerging evidence from environmental events like the record-breaking smog that choked New Delhi two years ago.
New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.
A new view of wintertime air pollution
The team's unexpected finding suggests that in the US West and elsewhere, certain efforts to reduce harmful wintertime air pollution could backfire.
Tracking the sources of plastic pollution
Plastic pollution in the world's oceans is now widely recognized as a major global challenge -- but we still know very little about how these plastics are actually reaching the sea.
Delhi's complicated air pollution problem
According to the World Health Organization, Delhi is the world's most polluted large city.
A warming world increases air pollution
The UC Riverside-led study shows that the contrast in warming between the continents and sea, called the land-sea warming contrast, drives an increased concentration of aerosols in the atmosphere that cause air pollution.
China's war on particulate air pollution is causing more severe ozone pollution
In China, the rapid reduction of the pollutant PM 2.5 dramatically altered the chemistry of the atmosphere, leading to an increase in harmful ground-level ozone pollution, especially in large cities.
More Pollution News and Pollution Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab