Nav: Home

New polymer tackles PFAS pollution

June 05, 2019

The problem of cleaning up toxic polyfluorinated alkyl substances (PFAS) pollution - commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams - has been solved through the discovery of a new low-cost, safe and environmentally friendly method that removes PFAS from water.

In The US, contamination by PFAS and other so-called "forever chemicals" has been detected in foods including grocery store meats and seafoods by FDA tests, prompting calls for regulations to be applied to manmade compounds. Consistent associations between very high levels of the industrial compounds in peoples' blood and health risks have been reported but insufficient evidence has been presented to prove the compounds as the cause.

In Australia, PFAS pollution - which does not break down readily in the environment - has been a hot news item due to the extensive historical use of fire-fighting foams containing PFAS at airports and defence sites, resulting in contaminated ground water and surface water being reported in these areas.

Researchers from the Flinders University Institute for NanoScale Science and Technology have - on World Environment Day - revealed a new type of absorbent polymer, made from waste cooking oil and sulfur combined with powdered activated carbon (PAC).

While there have been few economic solutions for removing PFAS from contaminated water, the new polymer adheres to carbon in a way that prevents caking during water filtration. It works faster at PFAS uptake than the commonly used and more expensive granular activated carbon method, and it dramatically lowers the amount of dust generated during handling PAC that lowers respiratory risks faced by clean-up workers.

"We need safe, low-cost and versatile methods for removing PFAS from water, and our polymer-carbon blend is a promising step in this direction," says Flinders University's Dr Justin Chalker, co-director of the study. "The next stage for us is to test this sorbent on a commercial scale and demonstrate its ability to purify thousands of litres of water. We are also investigating methods to recycle the sorbent and destroy the PFAS."

During the testing phase, the research team was able to directly observe the self-assembly of PFOA hemi-micelles on the surface of the polymer. "This is an important fundamental discovery about how PFOA interacts with surfaces," explains Dr Chalker.

The team demonstrated the effectiveness of the polymer-carbon blend by purifying a sample of surface water obtained near a RAAF airbase. The new filter material reduced the PFAS content of this water from 150 parts per trillion (ppt) to less than 23 parts per trillion (ppt), which is well below the 70 ppt guidance values for PFAS limits in drinking water issues by the Australian Government Department of Health.

The core technology for this PFAS sorbent is protected by a provisional patent.

"Our canola oil polysulfide was found to be highly effective as a support material for powdered activated carbon, enhancing its efficiency and prospects for implementation," says Nicholas Lundquist, PhD candidate at Flinders University and first author in the ground-breaking study.

The research paper, "Polymer supported carbon for safe and effective remediation of PFOA- and PFOS-contaminated water", by Nicholas Lundquist, Martin Sweetman, Kymberley Scroggie, Max Worthington, Louisa Esdaile, Salah Alboaiji, Sally Plush, John Hayball and Justin Chalker, has been published in the published in ACS Sustainable Chemistry & Engineering (DOI:10.1021/acssuschemeng.9b01793).

This project was a collaboration funded by the South Australian Defence Innovation Partnership, with further support from industry partners Puratap and the Salisbury Council. Co-directors of the study were A/Prof Sally Plush and Prof John Hayball at UniSA and Dr Justin Chalker at Flinders University.

Flinders PhD student Nicholas Lundquist was the lead author of the study in collaboration with Research Fellow Dr Martin Sweetman of UniSA.

"This successful project has laid the groundwork for significant ongoing, collaborative research between Flinders and UniSA," says Dr Sweetman, "as well as with our two industry partners Membrane Systems Australia and Puratap."
-end-
Other key contributors to the study were several current and former members of The Flinders University Institute for NanoScale Science and technology including Kymberley Scroggie, Max Worthington, Dr Louisa Esdaile, and Salah Alboaiji.

Funding for the start of this research came from the State Government's Defence Innovation Partnership program.

Key media contacts:

Name: Dr Justin Chalker, Senior Lecturer in Synthetic Chemistry, College of Science and Engineering, Flinders University
Tel: +61 8 8201 2268
Mob: +61 416 405 951 (ideal to text first; Justin will respond around teaching times).
Email: justin.chalker@flinders.edu.au

Name: Karen Ashford, Director, Media and Communications, Flinders University
Tel: +61 8 8201 2092
Mob: +61 427 398 713

Flinders University

Related Pollution Articles:

A friendlier way to deal with nitrate pollution
Learning from nature, scientists from the Center for Sustainable Resource Science in Japan and the Korean Basic Science Institute (KBSI) have found a catalyst that efficiently transforms nitrate into nitrite -- an environmentally important reaction -- without requiring high temperature or acidity, and now have identified the mechanism that makes this efficiency possible.
The world faces an air pollution 'pandemic'
Air pollution is responsible for shortening people's lives worldwide on a scale far greater than wars and other forms of violence, parasitic and insect-born diseases such as malaria, HIV/AIDS and smoking, according to a study published in Cardiovascular Research.
Airborne pollution associated with more severe rhinitis symptoms
A team of scientists from the Barcelona Institute for Global Health (ISGlobal), a research institute supported by 'la Caixa,' has discovered that the nasal symptoms of rhinitis are more severe in people exposed to higher levels of outdoor air pollution.
Air pollution in childhood linked to schizophrenia
Children who grow up in areas with heavy air pollution have a higher risk of developing schizophrenia.
Air pollution can worsen bone health
A new study by the CHAI Project with over 3,700 people in India associates air pollution with a higher risk to develop osteoporosis.
Combatting air pollution with nature
Air pollution is composed of particles and gases that can have negative impacts on both the environment and human health.
Nature might be better than tech at reducing air pollution
Adding plants and trees to the landscapes near factories and other pollution sources could reduce air pollution by an average of 27 percent, new research suggests.
Aspirin may prevent air pollution harms
A new study is the first to report evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) like aspirin may lessen the adverse effects of air pollution exposure on lung function.
Is pollution linked to psychiatric disorders?
Researchers are increasingly studying the effects of environmental insults on psychiatric and neurological conditions, motivated by emerging evidence from environmental events like the record-breaking smog that choked New Delhi two years ago.
New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.
More Pollution News and Pollution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.