Nav: Home

New study sheds light on how blood vessel damage from high glucose concentrations unfolds

June 05, 2019

  • Scientists from University of Warwick modelled effects of high blood glucose on cells that line blood vessels
  • Study improves understanding of how blood vessels are damaged in diabetes
  • Future research could potentially lead to new approaches to prevent organ damage in diabetes
A mechanism in the cells that line our blood vessels that helps them to process glucose becomes uncontrolled in diabetes, and could be linked to the formation of blood clots and inflammation according to researchers from the University of Warwick.

Reported in a new study in Scientific Reports led by Dr Naila Rabbani from Warwick Medical School, with further research the results could help to identify new ways to prevent organ damage from complications in diabetes.

The research examines the impact of normal and high concentrations of the sugar glucose on human endothelial cells, which form the lining of our blood vessels. By increasing the concentration of glucose in the culture medium the researchers modelled the effects of hyperglycemia on this type of cell.

Hyperglycemia is the condition in which an individual's blood glucose is abnormally high and is commonly caused by diabetes.

The researchers confirmed that glucose metabolism in endothelial cells is increased in high concentrations of glucose. They showed for the first time that this occurs because an enzyme that metabolises glucose in these cells, called hexokinase-2 (HK2), degrades more slowly in high glucose concentration and thereby metabolises more glucose than normal. Increased glucose metabolism is the driver of metabolic dysfunction of endothelial cells in model hyperglycemia.

They were able to correct this effect using a novel dietary supplement previously developed by the research team called a glyoxalase 1 inducer or Glo1 inducer.

They also found that the HK2 effect was the major mechanism increasing formation of a reactive glucose-derived substance called methylglyoxal (MG), known to be increased in diabetes and linked to damage to blood cells, kidneys, retina and nerves in arms and legs in diabetes - so-called vascular complication of diabetes.

MG binds and modifies proteins, causing them to become misfolded. In this study the researchers identified 222 proteins susceptible to MG modification and this activates a protein quality surveillance system called the unfolded protein response, which removes damaged proteins. When the unfolded protein response is overworked with a high level of misfolded protein substrate it causes an inflammatory response and there is an increased risk of blood clot formation. These processes contribute to blood vessel damage involved in the development of vascular complication of diabetes.

Dr Naila Rabbani, from Warwick Medical School, said: "Mechanisms of organ sensitivity to damage by high glucose concentrations in diabetes are still poorly understood and urgent improvement in treatment of diabetic complication is needed. Our study provides a step advance in understanding these mechanisms.

"Our research has identified a likely key step, increased HK2, in the initiation of development of damage to the blood vessels in hyperglycemia linked to vascular complications of diabetes, such as kidney disease, damage to the retina in eyes and nerves in the arms and legs, and increased risk of heart disease - the major cause of premature death in diabetes. Importantly, we showed how a new type of treatment, Glo1 inducer, can correct this and deserves consideration in the search for improved treatments for diabetic complications."

The research was conducted in collaboration with Professor Paul Thornalley, now Director of the Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU) in Qatar. The research team are now working to confirm and develop this research, to develop further evidence for the importance of HK2 and MG in cell dysfunction and organ damage in diabetes and the benefits of Glo1 inducer treatment for diabetes and diabetic complications.
-end-
The research was supported by funding from Taif University, Saudi Arabia; University of Warwick, U.K.; and QBRI, HBKU, part of the Qatar Foundation, Qatar.

* 'Activation of the unfolded protein response in high glucose treated endothelial cells is mediated by methylglyoxal' is published in Scientific Reports, DOI: 10.1038/s41598-019-44358-1

Notes to editors:

For more information, contact:
Peter Thorley
Media Relations Manager (Warwick Medical School and Department of Physics) | Press & Media Relations | University of Warwick
Email: peter.thorley@warwick.ac.uk
Tel: +44 (0)24 761 50868
Mob: +44 (0) 7824 540863

University of Warwick

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Related Diabetes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...