Nav: Home

Researchers discover what makes deep-sea dragonfish teeth transparent

June 05, 2019

A team of researchers led by the University of California San Diego have discovered what's responsible for making the teeth of the deep-sea dragonfish transparent. This unique adaptation, which helps camouflage the dragonfish from their prey, results from their teeth having an unusually crystalline nanostructure mixed with amorphous regions. The findings could provide "bioinspiration" for researchers looking to develop transparent ceramics.

Researchers detail their findings in a paper published June 5 in the journal Matter.

Deep-sea creatures have evolved some fascinating adaptations such as bioluminescence, eyes that can see in low light, and mouths that can engulf much larger prey. Some species, such as the deep-sea dragonfish (Aristostomias scintillans), have transparent teeth.

"It's an adaptation that, to our knowledge, has not yet been explored in detail," said Audrey Velasco-Hogan, a materials science PhD student at the UC San Diego Jacobs School of Engineering and first author of the study. "By studying why these teeth are transparent, we can better understand deep-sea organisms like the dragonfish and the adaptations they evolved to live in their environments."

Transparent teeth, along with a dark body, make the dragonfish essentially invisible to their prey, explained Velasco-Hogan. Because of this camouflage, dragonfish are among the top predators of the deep sea despite being small (measuring about 15 centimeters long) and relatively slow.

"They spend most of their time sitting around with their jaws open, waiting for something to come by. Their teeth are always exposed, so it's important that they are transparent so they don't reflect or scatter any bioluminescent light from the environment," Velasco-Hogan said.

To solve the mysteries of the dragonfish's dental disguise, researchers imaged and analyzed the nanostructure of the teeth using a combination of electron microscopy, focused ion beam and nanoindentation tests. They discovered that the teeth have unique characteristics both in their outer enamel-like layer and inner dentin layer.

The enamel-like layer consists of hydroxyapatite nanocrystals structured in a way that prevents light from scattering or reflecting off the surface of the teeth. The dentin layer is also structured in its own particular way. It lacks microscopic channels called dentin tubules, which are what give the teeth of humans and other animals their color. The absence of tubules is also responsible for making dragonfish teeth transparent.

"Typically, teeth are not nanostructured. And they tend to have microscale features such as dentin tubules. From a materials perspective, it's really interesting to see that dragonfish teeth have architectures that we do not see in others," Velasco-Hogan said.

"I also find it fascinating how there are fundamental similarities between materials in the lab and in nature," she added. "Experimentally, we know that the way to make a material transparent is by reducing its grain size to make it nanostructured. So to see that is also how nature is accomplishing transparency is an interesting parallel."

Interdisciplinary teamwork

Velasco-Hogan was part of an interdisciplinary team of researchers who were the first to study the dragonfish teeth in detail. Velasco-Hogan imaged the teeth, characterized their transparency and studied their mechanical properties. She worked under the direction of Marc Meyers, a professor in the Departments of NanoEngineering and Mechanical and Aerospace Engineering at UC San Diego.

"My group is always looking for new materials in nature to study," said Meyers, whose research focuses on biomimicry. "And interdisciplinary collaborations are a key part of our work. When we bring scientists from different backgrounds together, we can advance the knowledge in our fields in ways that a single lab could not do alone."

They collaborated with Dimitri Deheyn, a marine biologist at the Scripps Institution of Oceanography at UC San Diego who researches bioluminescence and biomimicry. Deheyn suggested the idea for the study, collected the specimens, conducted imaging experiments and characterized the transparency of the teeth.

"Taking advantage of the ultimate adaptation organisms show to specific environments has always been a driver for technological innovation, and the dragonfish is no exception to this," said Deheyn. "There is clearly still broad inspiration to gather from the dragonfish and nature in general, and this intercept between biology and engineering through biomimicry is clearly a lucrative path for sustainable innovations."

The team also involved the lab of Eduard Arzt, Director of the Leibniz Institute for New Materials (INM) in Saarbrücken, Germany. Marcus Koch, who is Head of Physical Analytics at INM, analyzed the nanostructure of the teeth with a specialized electron microscope. Birgit Nothdurft, a technician in the Division of Physical Analytics at INM, performed a highly specialized preparation of the specimens.
-end-
Paper title: "On the nature of the transparent teeth of the deep-sea dragonfish (Aristostomias scintillans)."

This work was supported by the Air Force Office of Research (grants FA9550-15-0009 and FA9550-10-1-0555), the German Humboldt Foundation, and the Biomimicry for Emerging Science and Technology Initiative.

University of California - San Diego

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.