Nav: Home

Why deep-sea dragonfish have transparent teeth

June 05, 2019

Off the coast of San Diego, 500 meters under the sea, pencil-sized sea monsters grin pitch-black smiles because their mouths are filled with transparent teeth. An investigation into this unique adaptation of deep-sea dragonfish (Aristostomias scintillans) revealed that their teeth evolved to reduce light scatter, allowing the fish's wide-open mouth to effectively disappear right before its jaws snap onto its prey. A team of oceanographers and materials scientists describe the properties of the teeth June 5 in the journal Matter.

"Most deep-sea fauna have unique adapations, but the fact that dragonfish have transparent teeth puzzled us, since the trait is usually found in larger species," says senior author Marc Meyers, who researches bioinspired materials at the University of California, San Diego. "We thought that the nanostructure would be different, and when we looked at this, we found grain-sized nanocrystals embedded throughout the the teeth are responsible for this uncanny optical property."

Despite measuring about 15 centimeters in length, deep-sea dragonfish are apex predators in their part of the ocean, feeding on smaller fish up to 50% of their size. The dragonfish's most distinct feature is it's extraordinarily large head full of fang-like teeth attached to a dark-skinned, eel-like body. The fish are so voracious that they tend to eat each other while researchers are in the process of collecting specimens.

Very few materials scientists are studying deep-sea creatures such as the dragonfish, but Meyers and graduate student Audrey Velasco partnered with Dimitri Deheyn (@DimitriDeheyn), a marine biologist at the Scripps Institution of Oceanography, who suggested the study. Their two groups teamed up with Eduard Arzt's Lab at the Leibniz Institute for New Materials in Germany to analyse the nanostructure with a specialized electron microscope, operated by Marcus Koch. Birgit Nothdurft, a technician at the Leibniz Institute for New Materials, did the highly specialized preparation of the specimens.

They discovered that transparency of the teeth is different from how other organisms have evolved this adaptation. First, they saw that dragonfish teeth, like human teeth, are comprised of an outer enamel-like layer and an inner dentin layer. The nanocrystals, about 20 nanometers in size, are dispersed throughout the amorphous matrix of the enamel, preventing any light that is in the environment from reflecting or scattering off the surface of the teeth. The teeth are are also relatively thin compared to other predatory fish, adding to this light scattering effect.

"Down at great depths there's almost no light, and the little light there is comes from fish, such as the dragonfish, that have small photophores that generate light, attracting prey," says Meyers. "But the dragonfish's teeth are huge in proportion to its mouth--it's like a monster from the movie Alien--and if those teeth should become visible, prey will immediately shy away. But we speculate that the teeth are transparent because it helps the predator."

Based on this study, the researchers are now raising funds to create transparent materials inspired by dragonfish teeth, using a combination of nanocrystals and ceramics.
-end-
The researchers acknowledge support from the the Air Force Office of Scientific Research and the Humboldt Foundation.

Matter, Velasco-Hogan et al.: "On the nature of the transparent teeth of the deep-sea dragonfish (Aristostomias scintillans)" https://www.cell.com/matter/fulltext/S2590-2385(19)30035-9

Matter (@Matter_CP), published by Cell Press, is a new journal for multi-disciplinary, transformative materials sciences research. Papers explore scientific advancements across the spectrum of materials development--from fundamentals to application, from nano to macro. Visit: https://www.cell.com/matter. To receive Cell Press media alerts, please contact press@cell.com.

Cell Press

Related Nanocrystals Articles:

A new kind of liquid scintillator via hybridizing perovskite nanocrystals with organic molecules
Highly-efficient scintillators are playing an essential role in various fundamental science and industrial applications.
CU student helps bridge teams at Clemson
Three teams of researchers at Clemson University have joined forces to unravel some of the mysteries surrounding perovskite nanocrystals, which are semiconductors with numerous applications, including LEDs, lasers, solar cells and photodetectors.
Nanocrystals from recycled wood waste make carbon-fiber composites tougher
In a new study, Texas A&M University researchers have used a natural plant product, called cellulose nanocrystals, to pin and coat carbon nanotubes uniformly onto the carbon-fiber composites.
A safe and powerful safeguard for your whole body against deadly radiation
IBS scientists have reported a highly effective and safe nanocrystal to combat dangers doses of radiation by growing manganese oxide (Mn3O4) nanocrystals on top of the Cerium oxide (CeO2) nanocrystals.
Antiferromagnetic fluoride nanocrystals
Recently, researchers from Peking University, Shenzhen University and National Institute for Materials Science (NIMS) report that the altered passivation of specified facets can direct the synthesis of fluoride nanocrystals into dimension-controlled products in a colloidal approach.
Scientists develop stable luminescent composite material based on perovskite nanocrystals
An international team of scientists that includes researchers from ITMO University has developed a new composite material based on perovskite nanocrystals for the purpose of creating miniature light sources with improved output capacity.
Ultrafast stimulated emission microscopy of single nanocrystals in Science
ICFO researchers report on a new ultrafast stimulated emission microscopy technique that allows imaging of nano-objects and investigating their dynamics.
Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability
Researchers at the Georgia Institute of Technology have demonstrated a novel approach aimed at addressing the perovskite's durability problem: encasing the perovskite inside a double-layer protection system made from plastic and silica.
Single-particle spectroscopy of CsPbBr3 perovskite reveals the origin low electrolumine
Researchers from Tokyo Institute of Technology (Tokyo Tech) used the method of single-particle spectroscopy to study electroluminescence in light-emitting devices.
University of Konstanz researchers create uniform-shape polymer nanocrystals
Researchers from the University of Konstanz's Collaborative Research Centre (CRC) 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' successfully generate uniform-shape nanocrystals using direct polymerization
More Nanocrystals News and Nanocrystals Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.