Nav: Home

Microorganisms on microplastics

June 05, 2019

Organisms can grow on microplastics in freshwater ecosystems. The findings of a recent study undertaken by researchers from the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) and the Leibniz Institute for Baltic Sea Research, Warnemünde (IOW) show that the potentially toxin-producing plankton species Pfiesteria piscicida prefers to colonise plastic particles, where they are found in 50 times higher densities than in the surrounding water of the Baltic Sea and densities about two to three times higher than on comparable wood particles floating in the water.

A plastic item weighing one gram, floating in the sea, can harbour more living organisms than a thousand litres of surrounding seawater. To date, little research has been conducted to determine the extent to which microorganisms colonise microplastics in brackish ecosystems, and which species dominate such populations. A team of limnologists have investigated the natural colonisation of polyethylene (PE) and polystyrene (PS) microplastics by eukaryotic microorganisms. Examples of eukaryotic microorganisms include plankton species that - unlike bacteria and viruses - are single-celled.

The 15-day experiment involved incubating PE and PS particles, a few millimetres in size, with natural microfauna at different stations in the Baltic Sea, the river Warnow and a wastewater treatment plant. The scientists then used sequence analysis to investigate the complex communities on the microplastics. Around 500 different species of eukaryotes were present on the tiny particles.

Top colonisers of microplastics potentially have an adverse effect on animal and human health

The dinoflagellate Pfiesteria piscicida, a potentially toxic plankton species, headed the top 20 microorganisms on microplastics. It reached densities about fifty times as high as in the surrounding water and about two to three times as high as on comparable wood particles. Its name means the "fish killer" - after all, this pathogen may damage the skin of fish by producing toxins. The mass production of these toxins may present a serious threat to human and animal health. The researchers chose a method for quantifying specific ribosomal RNA in order to estimate the density of the various microorganisms. This method does not measure the actual cell count of the colonizing organisms. However, it is regarded as a good indicator of the extent to which certain organisms shape a microbial community.

"Microplastics may represent a significant habitat and transport medium for microorganisms. Our experiments showed that microorganisms, e.g. dinoflagellates such as Pfiesteria piscicida, enrich on plastic items, where they exhibit much higher densities than in the surrounding water or on driftwood", explains the lead author of the study, Maria Therese Kettner from IGB, the results of the study. IGB researcher Hans-Peter Grossart, who led the study, addressed another issue: "Unlike natural substances such as wood or colonies of algae, microplastic particles decay extremely slowly, and may therefore transport the organisms they host over long distances." Floating plastic may therefore play a role in the dispersion of various (micro)-organisms, including invasive, parasitic and pathogenic species. "However, communities on microplastic particles often change when they 'travel' and adapt to their new environment," says marine microbiologist Matthias Labrenz. "Therefore, these aspects need further investigation," concludes the IOW researcher.
-end-


Forschungsverbund Berlin

Related Microorganisms Articles:

Study shows how microorganisms survive in harsh environments
In northern Chile's Atacama Desert, one of the driest places on Earth, microorganisms are able to eke out an existence by extracting water from the rocks they colonize.
Microorganisms in parched regions extract needed water from colonized rocks
Cyanobacteria living in rocks in Chile's Atacama Desert extract water from the minerals they colonize and, in doing so, change the phase of the material from gypsum to anhydrite.
Verticillium wilt fungus killing millions of trees is actually an army of microorganisms
A research project studied the microbiome of olive tree roots and concluded that Verticillium wilt is fueled by a community of microorganisms that team up to attack plants, thus reassessing the way this problem is dealt with
New drug formulation could treat Candida infections
With antimicrobial resistance (AMR) increasing around the world, new research led by the University of Bristol has shown a new drug formulation could possibly be used in antifungal treatments against Candida infections.
Lost in translation: Organic matter cuts plant-microbe links
Soil scientists from Cornell and Rice Universities have dug around and found that although adding carbon organic matter to agricultural fields is usually advantageous, it may muddle the beneficial underground communication between legume plants and microorganisms.
Montana State researcher harnesses microorganisms to make living building materials
Chelsea Heveran, assistant professor in the Department of Mechanical and Industrial Engineering, is the lead author of a new study showing that certain bacteria can be used to create an easily recyclable, concrete-like substance.
Crop residues are a potential source of beneficial microorganisms and biocontrol agents
While studies of the microbiomes (which comprises all the microorganisms, mainly bacteria and fungi) of the phyllosphere and the rhizosphere of plants are important, scientists at INRA believe more attention should be given to the microbiomes of crop residues.
Soil scientist researches nature versus nurture in microorganisms
Ember Morrissey, assistant professor of environmental microbiology at West Virginia University, uncovered that nature significantly affects how the tiny organisms under our feet respond to their current surroundings.
Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Microorganisms build the best fuel efficient hydrogen cells
With billions of years of practice, nature has created the most energy efficient machines.
More Microorganisms News and Microorganisms Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.