A new method for 3D reconstructions of eruptive events on sun

June 05, 2019

An international team of scientists led by Skoltech professor Tatiana Podladchikova developed a new 3D method for reconstructing space weather phenomena, in particular, shock waves produced by the Sun's energy outbursts. Their findings can help better understand and predict extreme space weather occurrences that affect the operation of engineering systems in space and on Earth. The results of their study were published in The Astrophysical Journal.

Space weather is sometimes more important than the weather on Earth, as solar flares, coronal mass ejections, and giant plasma clouds propelled from the Sun at 100 to 3,500 km/s, which is like a supersonic airplane, can initiate a large-scale magnetosonic shock wave in the solar atmosphere. The shock wave can also travel in interplanetary space and accelerate solar energy particles flying in all possible directions, posing a severe threat to astronauts and satellites alike.

As the coronal mass ejections and the accompanying shock waves hit the Earth's magnetosphere, they can set off violent geomagnetic storms and auroras. In an effort to fend off the attack of a multi-billion-ton mass of electrified gas knocking down everything in its path, some countries disable satellite dishes and other satellite equipment to avoid imminent disruptions, stop all satellite maneuvers, issue navigation failure alerts, change air routes, and cancel all over-the-pole flights.

In 2006, NASA launched its STEREO program, offering a ground-breaking opportunity to study the Sun and large-scale disturbances in its atmosphere. STEREO consists of two identical satellites ? one ahead of Earth in its orbit, the other trailing behind. With this pair of viewpoints, one can use a stereoscopic effect to obtain a 3D structure of solar eruptions, which cannot be achieved using a single measurement.

Scientists from Skoltech, the University of Graz (Austria), and the Royal Observatory of Belgium (ROB) used STEREO data to develop a 3D method for reconstructing extreme-ultraviolet (EUV) large-scale magnetosonic shock waves generated by high-energy solar emissions.

"Estimating the 3D structure and height of the EUV wave front is a non-trivial task. Since the plasma is optically transparent at the observed wavelengths, the measured signal reflects the radiation integrated along the satellite's line-of-sight, which makes it very difficult to identify objects in different STEREO images," explains Tatiana Podladchikova, the main author of the study and a Skoltech professor.

The researchers successfully estimated the shock wave front height under challenging conditions, with both STEREO satellites looking at different wave segments, and when the wave becoming diffusive and the signal losing strength. Moreover, 3D reconstructions provide an opportunity to estimate correctly the wave propagation rate.

"The proposed approach leverages the combination of stereo vision geometry methods and sophisticated noise filtering techniques, making it a useful tool for studying and predicting extreme space weather phenomena. And no matter what storms are raging in space, we wish you good weather in space!" adds Podladchikova.
-end-


Skolkovo Institute of Science and Technology (Skoltech)

Related Space Weather Articles from Brightsurf:

A method has been developed to study extreme space weather events
An international team of scientists developed a method to study fast Coronal Mass Ejections, powerful ejections of magnetized matter from the outer atmosphere of the Sun.

New 'sun clock' quantifies extreme space weather switch on/off
Extreme space weather events can significantly impact systems such as satellites, communications systems, power distribution and aviation.

Space weather model gives earlier warning of satellite-killing radiation storms
A new machine-learning computer model accurately predicts damaging radiation storms caused by the Van Allen belts two days prior to the storm, the most advanced notice to date, according to a new paper in the journal Space Weather.

Space Weather causes years of radiation damage to satellites using electric propulsion
The use of electric propulsion for raising satellites into geostationary orbit can result in significant solar cell degradation according to a new study being presented at the Royal Astronomical Society's National Astronomy Meeting.

Historic space weather could clarify what's next
Historic space weather may help us understand what's coming next, according to new research by the University of Warwick.

Satellite measurements of the Earth's magnetosphere promise better space weather forecasts
A Japan-based research team led by Kanazawa University equipped the Arase satellite with sensors to study the convoluted interactions between high-energy particles in the inner magnetosphere and the Earth's electric and magnetic field.

New network is installed to investigate space weather over South America
Magnetometer network identifies magnetic field disturbances that can cause interference in electronic appliances, power grids and satellite navigation systems.

Space weather, EarthScope, and protecting the national electrical grid
Geomagnetic disturbances from solar storms or electromagnetic pulse weapons pose a high risk to the electrical power grid.

NASA Ppotects its super heroes from space weather
When astronauts travel in space they can't see or even feel radiation.

NASA mission surfs through waves in space to understand space weather
NASA's Van Allen Probes have observed a new population of space sound waves, called plasmaspheric hiss, which are important in removing high-energy particles from around Earth that can damage satellites.

Read More: Space Weather News and Space Weather Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.