Nav: Home

A new method for 3D reconstructions of eruptive events on sun

June 05, 2019

An international team of scientists led by Skoltech professor Tatiana Podladchikova developed a new 3D method for reconstructing space weather phenomena, in particular, shock waves produced by the Sun's energy outbursts. Their findings can help better understand and predict extreme space weather occurrences that affect the operation of engineering systems in space and on Earth. The results of their study were published in The Astrophysical Journal.

Space weather is sometimes more important than the weather on Earth, as solar flares, coronal mass ejections, and giant plasma clouds propelled from the Sun at 100 to 3,500 km/s, which is like a supersonic airplane, can initiate a large-scale magnetosonic shock wave in the solar atmosphere. The shock wave can also travel in interplanetary space and accelerate solar energy particles flying in all possible directions, posing a severe threat to astronauts and satellites alike.

As the coronal mass ejections and the accompanying shock waves hit the Earth's magnetosphere, they can set off violent geomagnetic storms and auroras. In an effort to fend off the attack of a multi-billion-ton mass of electrified gas knocking down everything in its path, some countries disable satellite dishes and other satellite equipment to avoid imminent disruptions, stop all satellite maneuvers, issue navigation failure alerts, change air routes, and cancel all over-the-pole flights.

In 2006, NASA launched its STEREO program, offering a ground-breaking opportunity to study the Sun and large-scale disturbances in its atmosphere. STEREO consists of two identical satellites ? one ahead of Earth in its orbit, the other trailing behind. With this pair of viewpoints, one can use a stereoscopic effect to obtain a 3D structure of solar eruptions, which cannot be achieved using a single measurement.

Scientists from Skoltech, the University of Graz (Austria), and the Royal Observatory of Belgium (ROB) used STEREO data to develop a 3D method for reconstructing extreme-ultraviolet (EUV) large-scale magnetosonic shock waves generated by high-energy solar emissions.

"Estimating the 3D structure and height of the EUV wave front is a non-trivial task. Since the plasma is optically transparent at the observed wavelengths, the measured signal reflects the radiation integrated along the satellite's line-of-sight, which makes it very difficult to identify objects in different STEREO images," explains Tatiana Podladchikova, the main author of the study and a Skoltech professor.

The researchers successfully estimated the shock wave front height under challenging conditions, with both STEREO satellites looking at different wave segments, and when the wave becoming diffusive and the signal losing strength. Moreover, 3D reconstructions provide an opportunity to estimate correctly the wave propagation rate.

"The proposed approach leverages the combination of stereo vision geometry methods and sophisticated noise filtering techniques, making it a useful tool for studying and predicting extreme space weather phenomena. And no matter what storms are raging in space, we wish you good weather in space!" adds Podladchikova.
-end-


Skolkovo Institute of Science and Technology (Skoltech)

Related Space Weather Articles:

Space weather model gives earlier warning of satellite-killing radiation storms
A new machine-learning computer model accurately predicts damaging radiation storms caused by the Van Allen belts two days prior to the storm, the most advanced notice to date, according to a new paper in the journal Space Weather.
Space Weather causes years of radiation damage to satellites using electric propulsion
The use of electric propulsion for raising satellites into geostationary orbit can result in significant solar cell degradation according to a new study being presented at the Royal Astronomical Society's National Astronomy Meeting.
Historic space weather could clarify what's next
Historic space weather may help us understand what's coming next, according to new research by the University of Warwick.
Satellite measurements of the Earth's magnetosphere promise better space weather forecasts
A Japan-based research team led by Kanazawa University equipped the Arase satellite with sensors to study the convoluted interactions between high-energy particles in the inner magnetosphere and the Earth's electric and magnetic field.
New network is installed to investigate space weather over South America
Magnetometer network identifies magnetic field disturbances that can cause interference in electronic appliances, power grids and satellite navigation systems.
Space weather, EarthScope, and protecting the national electrical grid
Geomagnetic disturbances from solar storms or electromagnetic pulse weapons pose a high risk to the electrical power grid.
NASA Ppotects its super heroes from space weather
When astronauts travel in space they can't see or even feel radiation.
NASA mission surfs through waves in space to understand space weather
NASA's Van Allen Probes have observed a new population of space sound waves, called plasmaspheric hiss, which are important in removing high-energy particles from around Earth that can damage satellites.
Space weather events linked to human activity
Human activities, like nuclear tests and radio transmissions, have been changing near-Earth space and weather, and have created artificial radiation belts, damaged satellites and induced auroras.
Space weather model simulates solar storms from nowhere
A kind of solar storm has puzzled scientists for its lack of typical warning signs: They seem to come from nowhere, and scientists call them stealth CMEs.
More Space Weather News and Space Weather Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.