Nav: Home

Glacial sediments greased the gears of plate tectonics

June 05, 2019

Earth's outer layer is composed of giant plates that grind together, sliding past or dipping beneath one another, giving rise to earthquakes and volcanoes. These plates also separate at undersea mountain ridges, where molten rock spreads from the centers of ocean basins.

But this was not always the case. Early in Earth's history, the planet was covered by a single shell dotted with volcanoes--much like the surface of Venus today. As Earth cooled, this shell began to fold and crack, eventually creating Earth's system of plate tectonics.

According to new research, the transition to plate tectonics started with the help of lubricating sediments, scraped by glaciers from the slopes of Earth's first continents. As these sediments collected along the world's young coastlines, they helped to accelerate the motion of newly formed subduction faults, where a thinner oceanic plate dips beneath a thicker continental plate.

The new study, published June 6, 2019 in the journal Nature, is the first to suggest a role for sediments in the emergence and evolution of global plate tectonics. Michael Brown, a professor of geology at the University of Maryland, co-authored the research paper with Stephan Sobolev, a professor of geodynamics at the GFZ German Research Centre for Geosciences in Potsdam.

The findings suggest that sediment lubrication controls the rate at which Earth's crust grinds and churns. Sobolev and Brown found that two major periods of worldwide glaciation, which resulted in massive deposits of glacier-scrubbed sediment, each likely caused a subsequent boost in the global rate of plate tectonics.

The most recent such episode followed the "snowball Earth" that ended sometime around 635 million years ago, resulting in Earth's modern plate tectonic system.

"Earth hasn't always had plate tectonics and it hasn't always progressed at the same pace," Brown said. "It's gone through at least two periods of acceleration. There's evidence to suggest that tectonics also slowed to a relative crawl for nearly a billion years. In each case, we found a connection with the relative abundance--or scarcity--of glacial sediments."

Just as a machine needs grease to keep its parts moving freely, plate tectonics operates more efficiently with lubrication. While it may be hard to confuse the gritty consistency of clay, silt, sand and gravel with a slippery grease, the effect is largely the same at the continental scale, in the ocean trenches where tectonic plates meet.

"The same dynamic exists when drilling Earth's crust. You have to use mud--a very fine clay mixed with water or oil--because water or oil alone won't work as well," Brown said. "The mud particles help reduce friction on the drill bit. Our results suggest that tectonic plates also need this type of lubrication to keep moving."

Previous research on the western coast of South America was the first to identify a relationship between sediment lubrication and friction along a subduction fault. Off the coast of northern Chile, a relative lack of sediment in the fault trench creates high friction as the oceanic Nazca plate dips beneath the continental South America plate. This friction helped to push the highest peaks of the central Andes Mountains skyward as the continental plate squashed and deformed.

In contrast, further south there is a higher sediment load in the trench, resulting in less friction. This caused less deformation of the continental plate and, consequently, created smaller mountain peaks. But these findings were limited to one geographic area.

For their study, Sobolev and Brown used a geodynamic model of plate tectonics to simulate the effect of sediment lubrication on the rate of subduction. To verify their hypothesis, they checked for correlations between known periods of widespread glaciation and previously published data that indicate the presence of continental sediment in the oceans and trenches. For this step, Sobolev and Brown relied on two primary lines of evidence: the chemical signature of the influence of continental sediments on the chemistry of the oceans and indicators of sediment contamination in subduction-related volcanoes, much like those that make up today's "ring of fire" around the Pacific Ocean.

According to Sobolev and Brown's analysis, plate tectonics likely emerged on Earth between 3 and 2.5 billion years ago, around the time when Earth's first continents began to form. This time frame also coincides with the planet's first continental glaciation.

A major boost in plate tectonics then occurred between 2.2 to 1.8 billion years ago, following another global ice age that scrubbed massive amounts of sediments into the fault trenches at the edges of the continents.

The next billion years, from 1.75 billion to 750 million years ago, saw a global reduction in the rate of plate tectonics. This stage of Earth's history was so sedate, comparatively speaking, that it earned the nickname "the boring billion" among geologists.

Later, following the global "snowball Earth" glaciation that ended roughly 635 million years ago, the largest surface erosion event in Earth's history may have scrubbed more than a vertical mile of thickness from the surface of the continents. According to Sobolev and Brown, when these sediments reached the oceans, they kick-started the modern phase of active plate tectonics.
-end-
The research paper, "Surface erosion events controlled the evolution of plate tectonics on Earth," Stephan Sobolev and Michael Brown, was published in the journal Nature on June 6, 2019.

Media Relations Contacts: Matthew Wright, 301-405-9267, mewright@umd.edu


University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742
http://www.cmns.umd.edu
@UMDscience

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 9,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $175 million.

University of Maryland

Related Plate Tectonics Articles:

Upper-plate earthquakes caused uplift along New Zealand's Northern Hikurangi Margin
Earthquakes along a complex series of faults in the upper plate of New Zealand's northern Hikurangi Subduction Margin were responsible for coastal uplift in the region, according to a new evaluation of local marine terraces.
Breathing? Thank volcanoes, tectonics and bacteria
A Rice University study in Nature Geoscience suggests Earth's first burst of oxygen was added by a spate of volcanic eruptions brought about by tectonics.
What drives plate tectonics?
Scientists found ''switches'' between continental rupture, continental collision, and oceanic subduction initiation in the Tethyan evolution after a reappraisal of geological records from the surface and new global-scale geophysical images at depth.
Plate tectonics may have driven 'Cambrian Explosion, study shows
The quest to discover what drove one of the most important evolutionary events in the history of life on Earth has taken a new, fascinating twist.
Zipingpu Reservoir reveals climate-tectonics interplay around 2008 Wenchuan earthquake
A new study led by Prof. JIN Zhangdong from the Institute of Earth Environment (IEE) of the Chinese Academy of Sciences provided a new insight on the interplay between climate and tectonics from a sediment record in the Zipingpu Reservoir around the 2008 Wenchuan earthquake.
How to keep fish in the sea and on the plate
Temporary bans on fishing can be better than permanent ones as a way of allowing fish stocks in an area to recover, while still providing enough to eat, a research team has found.
Glacial sediments greased the gears of plate tectonics
According to new research, the transition to plate tectonics started with the help of lubricating sediments, scraped by glaciers from the slopes of Earth's first continents.
Tectonics in the tropics trigger Earth's ice ages, study finds
Over the last 540 million years, the Earth has weathered three major ice ages -- periods during which global temperatures plummeted, producing extensive ice sheets and glaciers that have stretched beyond the polar caps.
Natatanuran frogs used the Indian Plate to step-stone disperse and radiate across the Indian Ocean
The evolutionary history of near-cosmopolitan Natatanuran frogs involved using the Indian Plate as a stepping-stone to disperse between Africa, Asia and Madagascar.
Enhanced views of Earth tectonics
Scientists from Germany's Kiel University and British Antarctic Survey (BAS) have used data from the European Space Agency (ESA), Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission to unveil key geological features of the Earth's lithosphere -- the rigid outer layer that includes the crust and the upper mantle.
More Plate Tectonics News and Plate Tectonics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.