Nav: Home

Video gamers design brand new proteins

June 05, 2019

A team of researchers encoded their specialized knowledge into the computer game Foldit to enable citizen scientists to successfully design synthetic proteins for the first time.

The initial results of this collaboration appear in the June 5 issue of Nature. The Institute for Protein Design at the University of Washington School of Medicine led the multi-institutional effort.

"There are more possible proteins than there are atoms in the universe. It's exciting to think that now anyone can help explore this vast space of possibilities," said senior co-author David Baker, professor of biochemistry at the UW School of Medicine and director of the Institute for Protein Design.

"The diversity of molecules that these gamers came up with is astonishing," said lead author Brian Koepnick, postdoctoral researcher at the Institute for Protein Design. "These new proteins are by no means inferior to the stuff a PhD-level scientist might make."

Foldit was created in 2008 as a way to 'gamify' protein research. Proteins are essential biomolecules found inside every cell of every organism. Their intricate three-dimensional structures give rise to their diverse functions, which include digestion, wound healing, autoimmunity and much more.

Through gameplay, Foldit players have helped determine the structure of an HIV-related protein and improved the activity of useful enzymes. Until now, however, Foldit players could interact only with proteins that already existed. There was no way to design new ones.

"Designing completely new proteins that didn't exist in nature has been our goal with Foldit for a long time," said senior co-author Seth Cooper, assistant professor in the Khoury College of Computer Sciences at Northeastern University. "This new set of results shows that it's possible."

To turn Foldit into a platform for protein design, the researchers encoded biochemical knowledge into the game. That way, designer molecules that scored well in Foldit would be more likely to fold up as intended in the real world.

"We didn't give [Foldit players] any lectures or tell them to read anything. Instead, we tweaked the code that has run the game over many years," said senior co-author Firas Khatib, assistant professor of computer science at the University of Massachusetts Dartmouth.

The scientists tested 146 proteins designed by Foldit players in the laboratory. 56 were found to be stable. This finding suggested the gamers had produced some realistic proteins. The researchers collected enough data on four of these new molecules to show that the designs adopted their intended structures.

"I never would have believed they would get that good, but Foldit players never cease to amaze us." said Khatib.

Crafting new proteins is a bit like trying to tie never-before-seen knots using rope that is a million times thinner than a human hair. To date, only a small group of experts with intimate knowledge of the way biomolecules twist and turn bothered with this exceedingly complex task. Most use automated molecular design algorithms, and most design algorithms fail far more often than they succeed.

"We are always trying to make the algorithms better, but the human element is key," said Khatib. "In fact, through Foldit design, players have even discovered flaws in the Rosetta energy function -- our state-of-the-art method for protein design."

Protein design is an emerging scientific discipline. In the past five years, experts at the Institute for Protein Design and their colleagues have created proteins that stimulate the immune system to fight cancer and others that act as potent vaccine candidates. In April, the Institute for Protein Design received a commitment of $45 million in funding through The Audacious Project, a philanthropic collaborative organized by TED, to design protein-based vaccines, medicines and materials.

Could gamers create the next blockbuster drug?

"Foldit players are a new addition to the research arsenal," said Khatib. "They're not a silver bullet, but they are an amazing resource."
Anyone interested in helping solve puzzles for science can learn more at

University of Washington Health Sciences/UW Medicine

Related Proteins Articles:

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
New tool for the crystallization of proteins
ETH researchers have developed a new method of crystallizing large membrane proteins in order to determine their structure.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at