Nav: Home

Jam-packed: A novel microscopic approach to amorphous solids

June 05, 2019

Tokyo, Japan - A team led by The University of Tokyo developed a new method for understanding the structure organization of disordered collections of soft discs or spheres by a new approach putting a focus on local mechanical properties, fundamentally different from previous approaches to ordered crystals and disordered amorphous solids. In particular, the researchers focused packings resulted from the phenomenon of "jamming," in which a free-flowing substance suddenly clogs as the density increases. The work may help with the design of more efficient industrial materials that are less likely to breakdown under external load.

Imagine you are sitting on the beach playing with the sand piles. But when you try to decorate the castle that you have just built, you are surprised to find that only a very small operation leads to its collapse. In this case, you've just discovered the "marginal stability" of amorphous solids, due to which the system loses its stability unexpectedly. While amorphous solids are ubiquitous in nature and have wide industrial applications, it can be a serious issue for our safety if they fall apart out of control. The structural organization of amorphous solids, which leads to marginal stability, is quite complex and still not completely understood. In fact, most scientists intend to understand amorphous solids using the established models of ordered crystals, but consensus has never been reached.

"Despite intensive study over decades, the unified description of amorphous solids has yet to be firmly established," says first author Dr. Hua Tong.

For the current project, the researchers used computer simulations of soft discs or spheres that can flow at low densities, but become jammed when packed tightly enough. Their key insight was to shift the focus from geometry to the mechanical or vibrational aspect of amorphous solids. The team introduced a new order parameter they call "vibrability," which controls how much the atoms vibrate when heated infinitesimally from zero temperature. Unklike phonons, that are collective vibrations in crystals, the vibrability in an amorphous solid depends on the local environment, and varies from place to place throughout the sample. The researchers showed that locations of high vibrability correspond to disordered "soft spots" that are important for determining where the system may fail under perturbations.

Amorphous solids can be found in a wide variety of forms, yet they all seem to share important features when examined. "An important observation of amorphous solid or jammed packings is that, while they have diverse geometrical structures, they exhibit fairly universal vibrational characteristics" says senior author Prof. Hajime Tanaka. "The discoveries from computer simulations are therefore of fundamental importance for both theoretical and application purposes."
-end-
The work is published in Physical Review Letters as "Revealing Inherent Structural Characteristics of Jammed Particulate Packing." (DOI: 10.1103/PhysRevLett.122.215502)

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Institute of Industrial Science, The University of Tokyo

Related Crystals Articles:

Transparency discovered in crystals with ultrahigh piezoelectricity
Use of an AC rather than a DC electric field can improve the piezoelectric response of a crystal.
New photonic liquid crystals could lead to next-generation displays
A new technique to change the structure of liquid crystals could lead to the development of fast-responding liquid crystals suitable for next generation displays -- 3D, augmented and virtual reality -- and advanced photonic applications such as mirrorless lasers, bio-sensors and fast/slow light generation, according to an international team of researchers from Penn State, the Air Force Research Laboratory and the National Sun Yat-sen University, Taiwan.
The secret behind crystals that shrink when heated
Scientists at Brookhaven Lab have new experimental evidence and a predictive theory that solves a long-standing materials science mystery: why certain crystalline materials shrink when heated.
Engineered protein crystals make cells magnetic
If scientists could give living cells magnetic properties, they could perhaps manipulate cellular activities with external magnetic fields.
Appreciating the classical elegance of time crystals
Structures known as 'time crystals' -- which repeat in time as conventional crystals repeat in space -- have recently captured the interest and imagination of researchers across disciplines.
Making and controlling crystals of light
EPFL scientists have shown how light inside optical on-chip microresonators can be crystallized in a form of periodic pulse trains that can boost the performance of optical communication links or endow ultrafast LiDAR with sub-micron precision.
From crystals to glasses: a new unified theory for heat transport
Theoretical physicists from SISSA and the UCDavis lay brand new foundations to heat transport in materials, which finally allow crystals, polycrystalline solids, alloys, and glasses to be treated on the same solid footing.
How to trick electrons to see the hidden face of crystals
The 3D analysis of crystal structures requires a full 3D view of the crystals.
Science snapshots: Chromosomes, crystals, and drones
From Berkeley Lab: exploring human origins in the uncharted territory of our chromosomes; scientists grow spiraling new material; drones will fly for days with this new technology
Probing semiconductor crystals with a sphere of light
Tohoku University researchers have developed a technique using a hollow sphere to measure the electronic and optical properties of large semiconducting crystals.
More Crystals News and Crystals Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.