Nav: Home

NTU Singapore scientists uncover binding secret behind protein 'superglue'

June 05, 2019

Scientists from Nanyang Technological University, Singapore (NTU Singapore) have pinpointed how a special class of plant-derived enzymes, known as peptide ligases, work to join proteins together. Such binding is an important process in the development of drugs, for example in specifically attaching a chemotherapy drug to an antibody that recognises tumour markers to target cancer cells.

More broadly, peptide ligases are a useful tool in biotechnological and biomedical applications such as protein labelling, imaging and tracking proteins in the body.

The NTU Singapore scientists have shown that the secret to a peptide ligase's 'superglue' property lies in two specific regions of the enzyme that give it the ability to attach itself to other molecules, and to alter the rate at which it works.

The NTU team led by Associate Professor Julien Lescar and Professor James Tam of the NTU School of Biological Sciences used their new-found knowledge to develop a new lab-created peptide ligase based on genetic information from the Chinese violet (Viola yedoensis), a medicinal plant with antibiotic and anti-inflammatory properties.

The artificially-created peptide ligase, also known as a recombinant peptide ligase, may help the development of drugs made from components taken from living organisms, as it overcomes the limitations of current methods, such as by-products or toxic molecules that may alter a drug's function and efficacy.

The findings were published in April in the Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Associate Professor Julien Lescar, who is also based in the NTU Institute of Structural Biology (NISB), said, "We've used what we have learnt in nature to engineer a recombinant enzyme in the lab. It attaches itself to a specific protein, which then joins to another specific protein or molecule. This new way of doing things could underpin better diagnostic tests or anti-cancer drugs."

Currently, during drug development, protein molecules are stitched together chemically. While this is efficient, the process leaves by-products that may alter the function of the end product.

Plant-derived peptide ligases have proven to be a more reliable protein 'superglue' than ligases derived from bacteria, or the use of chemicals to bind proteins together. Assoc Prof Lescar noted that plant-extracted enzymes may carry trace contaminants that could in turn trigger allergies, and the availability of the enzyme is dependent on successful growing and harvesting. In contrast, the new NTU-developed recombinant enzyme can be produced in labs in large quantities without any by-products.

Professor James Tam, who is also in the NISB, said, "In very simple terms, our work to create these ligases provides an improved platform for precision biomanufacturing of drugs, diagnostics and biomaterials."

Taking a leaf out of nature's book

The NTU team studied the genetic information of enzymes extracted from the Chinese violet (Viola yedoensis) and the Canada violet (Viola canadensis). Instead of testing the efficiency of these extracted enzymes, the scientists engineered five recombinant enzyme samples by inserting the enzymes' genes into an insect cell culture. Of the five samples, three are peptide ligases. The other two are proteases, which are enzymes that cleave protein molecules into smaller peptide chains.

The scientists found that one of the recombinant peptide ligase samples, VyPAL2, has exceptional binding properties, and is 3,000 times more efficient than three other known types of ligases.

Through a structural analysis of VyPAL2, the NTU team then narrowed down the "control centres" of its 'superglue' property to two specific regions, which they called LAD1 and LAD2. LAD1 affects the rate of enzymatic activity, while LAD2 determines whether the enzyme exhibits ligase or protease activity.

Turning proteases into peptide ligases

Another discovery stemming from the knowledge of the peptide ligase's molecular mechanism is a method to convert it from being a cutter (a protease) into a joiner (peptide ligase). This can be done by introducing mutations into the LAD1 and LAD2 regions of a protease.

Knowing this conversion process opens up possibilities for identifying novel interesting peptide ligases by simply trawling through protein sequence databases, said Assoc Prof Lescar.

"When you have tens of thousands of proteases, and only a few known peptide ligases, trawling through the sequence databases with the LAD1 and LAD2 regions as the search criteria could lead to the discovery of more proteases that can be converted into peptide ligases. It's like a fishing expedition, but at least now we know where to fish."

Future applications

The team recently received funding from NTUitive, NTU's innovation and enterprise company, and is now working to develop the recombinant enzyme into a product. The product will be eventually sold at Epitoire, a start-up founded by Assoc Prof Lescar. The start-up sells DNA, RNA and protein reagents for academics and researchers who wish to do protein modification.

The team is also partnering both local and overseas medical schools and health institutions to use this recombinant enzyme in diagnostic imaging, such as brain tumour imaging during a surgery.

A patent has been filed for the creation of the recombinant enzyme, as well as the mechanism that converts a protease into a ligase.
Note to editors:

Paper titled 'Structural determinants for peptide-bond formation by asparaginyl ligases' published in Proc Natl Acad Sci U S A. 2019 May 23. pii: 201818568. doi: 10.1073/pnas.1818568116.

Media contact:

Foo Jie Ying
Manager, Corporate Communications Office
Nanyang Technological University

About Nanyang Technological University, Singapore

A research-intensive public university, Nanyang Technological University, Singapore (NTU Singapore) has 33,000 undergraduate and postgraduate students in the Engineering, Business, Science, Humanities, Arts, & Social Sciences, and Graduate colleges. It also has a medical school, the Lee Kong Chian School of Medicine, set up jointly with Imperial College London.

NTU is also home to world-class autonomous institutes - the National Institute of Education, S Rajaratnam School of International Studies, Earth Observatory of Singapore, and Singapore Centre for Environmental Life Sciences Engineering - and various leading research centres such as the Nanyang Environment & Water Research Institute (NEWRI) and Energy Research Institute @ NTU (ERI@N).

Ranked 12th in the world, NTU has been placed the world's top young university for the past five years. The University's main campus is frequently listed among the Top 15 most beautiful university campuses in the world and it has 57 Green Mark-certified (equivalent to LEED-certified) building projects comprising more than 230 buildings, of which 95% are certified Green Mark Platinum. Apart from its main campus, NTU also has a campus in Singapore's healthcare district.

For more information, visit

Nanyang Technological University

Related Enzymes Articles:

How enzymes build sugar trees
Researchers have used cryo-electron microscopy to elucidate for the first time the structure and function of a very small enzyme embedded in cell membranes.
Energized by enzymes -- nature's catalysts
Scientists at Pacific Northwest National Laboratory are using a custom virtual reality app to design an artificial enzyme that converts carbon dioxide to formate, a kind of fuel.
Mathematical model reveals behavior of cellular enzymes
Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.
While promoting diseases like cancer, these enzymes also cannibalize each other
In diseases like cancer, atherosclerosis, and sickle cell anemia, cathepsins promote their propagation.
Researchers finally grasp the work week of enzymes
Scientists have found a novel way of monitoring individual enzymes as they chomp through fat.
New study looks to biological enzymes as source of hydrogen fuel
Research from the University of Illinois and the University of California, Davis has chemists one step closer to recreating nature's most efficient machinery for generating hydrogen gas.
How oxygen destroys the core of important enzymes
Certain enzymes, such as hydrogen-producing hydrogenases, are unstable in the presence of oxygen.
How nature builds hydrogen-producing enzymes
A team from Ruhr-Universität Bochum and the University of Oxford has discovered how hydrogen-producing enzymes, called hydrogenases, are activated during their biosynthesis.
New family on the block: A novel group of glycosidic enzymes
A group of researchers from Japan has recently discovered a novel enzyme from a soil fungus.
Surprising enzymes found in giant ocean viruses
A new study led by researchers at Woods Hole Oceanographic Institution (WHOI) and Swansea University Medical School furthers our knowledge of viruses -- in the sea and on land -- and their potential to cause life-threatening illnesses.
More Enzymes News and Enzymes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at