Ultrastable, selective catalyst for propane dehydrogenation developed

June 05, 2020

A group of Japanese scientists has developed an ultrastable, selective catalyst to dehydrogenate propane - an essential process to produce the key petrochemical substance of propylene - without deactivation, even at temperatures of more than 600°C.

Propylene is an important raw material for plastics, synthetic rubber, surfactants, dyes and pharmaceuticals. In recent years, there has been an increased demand for propylene produced from cheaper, shale-originated propane. Reaction temperatures of more than 600°C are necessary to obtain sufficient propylene yields, but under these harsh conditions, severe catalyst deactivation is inevitable due to carbon deposition and/or sintering. Catalysts in practical use, therefore, must be regenerated either continuously or in short cycles, making the process inefficient and costly.

In the present study, the group, including a master's student Yuki Nakaya and Associate Professor Shinya Furukawa at Hokkaido University's Institute for Catalysis, focused on the intermetallics (PtGa) of platinum (Pt) and gallium (Ga), which have unique properties and structures. PtGa has a high thermal stability and its structure does not change even under high temperatures. It is also known to have two kinds of catalytic sites on its surface: a site with three Pt atoms (Pt3 site) and one with single-atom-like isolated Pt (Pt1 site).

The group hypothesized that if the Pt3 sites - which facilitates carbon deposition in addition to producing propylene - is disabled to allow only the Pt1 sites to function, the catalyst will be ultrastable and also able to prevent carbon deposition. The group tried various metals and catalyst synthesis methods to make only the Pt1 site function.

The newly developed catalyst (PtGa-Pb/SiO2), which is silica-supported and made by adding lead (Pb) to the surface of PtGa, exhibits no deactivation when dehydrogenating propane at 600°C. The catalyst maintained the initial conversion rate of 30 percent for 96 hours after the reaction started, which is significantly more stable than conventional catalysts. Propylene selectivity is as high as 99.6 percent with few side reactions, including carbon deposition. The results showed that this catalyst produces the world's best performance at temperatures of 580°C or higher. In particular, its life span is more than twice as long as the previous reported record longevity for such catalysts. Furthermore, the catalyst can be produced as cheaply as conventional catalysts. Their structural analysis confirmed Pt3 sites, not Pt1 sites, were covered and disabled by Pb, as they expected.

"Our finding could lead to a more efficient and cheaper industrial process to produce propylene from propane without the need for catalyst regeneration - which is far superior in selectivity and stability than conventional ones," says Furukawa. "Moreover, this method could be applicable to dehydrogenation of other lower alkanes such as ethane and isobutane, thus contributing to the petrochemical industry's development."
-end-


Hokkaido University

Related Lead Articles from Brightsurf:

Lead-free magnetic perovskites
Scientists at Linköping University, Sweden, working with the perovskite family of materials have taken a step forwards and developed an optoelectronic magnetic double perovskite.

Researchers devise new method to get the lead out
Researchers in the lab of Daniel Giammar, in McKelvey School of Engineering have devised a simple, quick and inexpensive way to quantify how much lead is trapped by a water filter.

Preventing lead poisoning at the source
Using a variety of public records, researchers from Case Western Reserve University examined every rental property in Cleveland from 2016-18 on factors related to the likelihood that the property could have lead-safety problems.

Silicones may lead to cell death
Silicone molecules from breast implants can initiate processes in human cells that lead to cell death.

Poor diet can lead to blindness
An extreme case of 'fussy' or 'picky' eating caused a young patient's blindness, according to a new case report published today [2 Sep 2019] in Annals of Internal Medicine.

What's more powerful, word-of-mouth or following someone else's lead?
Researchers from the University of Pittsburgh, UCLA and the University of Texas published new research in the INFORMS journal Marketing Science, that reveals the power of word-of-mouth in social learning, even when compared to the power of following the example of someone we trust or admire.

UTI discovery may lead to new treatments
Sufferers of recurring urinary tract infections (UTIs) could expect more effective treatments thanks to University of Queensland-led research.

Increasing frailty may lead to death
A new study published in Age and Ageing indicates that frail patients in any age group are more likely to die than those who are not frail.

Discovery could lead to munitions that go further, much faster
Researchers from the U.S. Army and top universities discovered a new way to get more energy out of energetic materials containing aluminum, common in battlefield systems, by igniting aluminum micron powders coated with graphene oxide.

Shorter sleep can lead to dehydration
Adults who sleep just six hours per night -- as opposed to eight -- may have a higher chance of being dehydrated, according to a study by Penn State.

Read More: Lead News and Lead Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.