View into plant cells: A membrane protein is targeted to two locations

June 05, 2020

Metabolic processes are especially complex in plants due to their obligate sessile life style - which is why scientists discover more and more new and surprising connections that occur within their cells. An important metabolic route that has occupied plant scientists for decades is the so-called oxidative pentose-phosphate pathway by which carbohydrates are converted to reduction power. For this pathway, two membrane proteins play an important role - GPT1 and GPT2. They import activated glucose in the form of glucose-6-phosphate into plastids, special cell organelles of plants, to "feed" the oxidative pentose-phosphate pathway. This process is also important for plant reproduction, especially during pollen, ovule and seed development.

Since there were indications that the three oxidative steps of the pathway may also occur in other cell organelles, the peroxisomes, researchers from the University of Münster (Germany) pondered: are also membrane proteins directed simultaneously to two different sites within the same cell? Together with colleagues at the University of Düsseldorf (Germany) they now found an answer. Their results show that only GPT1 is distributed to two locations - and the alternative route of the membrane protein leads via the endoplasmic reticulum, another, net-like organelle of the cell. Thus, GPT1 enables at two sites simultaneously the formation of reduction power, i.e. the capability to transfer electrons.

"Our study shows that besides in plastids and the cytoplasm, the oxidative pentose-phosphate pathway is also a main source of the energy-rich coenzyme NADPH in peroxisomes," emphasizes head of the study Prof. Antje von Schaewen from Münster University. The researchers suppose that plants in which this pathway is blocked in peroxisomes may be less stress-resistant. The study was published in the journal The Plant Cell.

Background and Method:

The scientists investigated the processes in Arabidopsis thaliana, a genetic model plant. In previous studies they had already shown in this species, how other enzymes of the pathway are re-directed from plastids or the cytoplasm to peroxisomes under certain conditions. For this purpose, they employed fluorescent reporter fusion proteins. This method was also used in their current study to visualize GPT1 and GPT2 by life-cell imaging and modern light microscopic techniques.

They found that only GPT1 targets both plastids and the endoplasmic reticulum, from which new peroxisomes are formed in a particular region. The scientists observed that a still unknown factor initially prevents the transport of GPT1 to peroxisomes - until the membrane protein is needed there. "By experimentally enforcing interaction with peroxisomal import proteins at the endoplasmic reticulum we could show that GPT1 can be 'dragged' to its alternative location," explains first author Dr. Marie-Christin Baune.

After the researchers had discovered that GPT1 occurs at peroxisomal membranes, they investigated in an artificially reconstituted system from yeast which transport processes may occur. They found that GPT1 prefers to exchange glucose-6-phosphate for ribulose-5-phosphate, the product which again leaves the organelle. Ribulose-5-phosphate is an important precursor of nucleotides, the building blocks of nucleic acids.

So-called immunoblot analyses, by which proteins are visualised, additionally suggested that GPT1 is not only essential at plastids during fertilization but also at peroxisomes. Thus, GPT1 differs markedly from its "brother" GPT2 - a result that the scientists had not expected and which also became evident in genetically modified plants.

"Our results suggest that GPT1 and GPT2, despite their high similarity, fulfill only minimally overlapping tasks in plants. The loss of GPT2 is tolerated, at least under laboratory conditions. GPT1 however is indispensable, both at plastids and peroxisomes," says co-author Dr. Hannes Lansing.

"Since we now know that all reactions of the oxidative pentose-phosphate pathway that produce NADPH and ribulose-5-phosphate may occur in peroxisomes, we want to find out in future studies which other processes depend on them," says Antje von Schaewen.
-end-


University of Münster

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.