UTEP researchers help bring biofriendly materials to drug design for neuro disorders

June 05, 2020

EL PASO, Texas - The contributions of researchers from The University of Texas at El Paso (UTEP) have yielded the first indication that carbon quantum dots, a class of nanoparticles, can be utilized to combat neurological disorders, according to a paper published in the journal Processes as part its special issue on protein biosynthesis and drug design and delivery.

The study, titled "Untangling the Potential of Carbon Quantum Dots in Neurodegenerative Disease," was co-authored by Sreeprasad T. Sreenivasan, Ph.D., and Mahesh Narayan, Ph.D., assistant professor and professor, respectively, in UTEP's Department of Chemistry and Biochemistry. The pair contributed to work by Prakash Narayan, Ph.D., vice president of preclinical research for Angion Biomedica Corp. in Uniondale, New York; and Lindsey Jung, a student at Tenafly High School in New Jersey, who works under Prakash Narayan's supervision.

The study focuses on carbon quantum dots (CQDs), biofriendly materials synthesized from waste materials such as wood, fruit peel, algae and even salmon. A road map laid out by the research team addresses, for the first time, key requirements for the transitioning of their use from environmental-sensing applications into the neurodegenerative domain; a crossing-over that requires their separation and total characterization, including aspects related to safety and their ability to target specific receptors in the brain.

"The carbonaceous quanta are finally making their way from physics into chemistry and now, biology," Prakash Narayan said. "This work lays the foundation for harnessing the enormous potential of carbon quantum dots for therapeutic intervention in neuro disease."

The CQDs are made by "pressure-cooking" waste biomaterials such as fruit peel, amino acids, algae and even fish. As an outcome of the procedure, they are synthesized as a mixture of carbon dots and non-carbon dots. Some of the compounds in the mixture can be toxic. This aspect would negate their use in biomedical applications.

To facilitate the crossing-over of CQDs into preclinical and eventually clinical use, the research team provides a path for their safe use while demonstrating their potential to both prevent and treat neurodegenerative disorders, Mahesh Narayan said.

The research was conducted at Angion Biomedica, and at UTEP's Functional Quantum Materials Laboratory and the Laboratory for Neurodegenerative Research.

The transitioning of CQD applications from electrochemistry, catalysis and environmental sensing to biomedicine represents an important milestone in its 15-year history; a bellwether for its yet-unrealized potential in interventional biology, imaging, diagnostics, prophylaxis and therapy.

"This will allow pharmaceutical companies to tailor carbon quantum dots for specific uses," Mahesh Narayan said. "Individuals with Parkinson's and Alzheimer's could benefit greatly from this kind of therapy."
To read the full paper, visit https://www.mdpi.com/2227-9717/8/5/599.

University of Texas at El Paso

Related Biology Articles from Brightsurf:

Experimental Biology press materials available now
Though the Experimental Biology (EB) 2020 meeting was canceled in response to the COVID-19 outbreak, EB research abstracts are being published in the April 2020 issue of The FASEB Journal.

Structural biology: Special delivery
Bulky globular proteins require specialized transport systems for insertion into membranes.

Cell biology: All in a flash!
Scientists of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a tool to eliminate essential proteins from cells with a flash of light.

A biology boost
Assistance during the first years of a biology major leads to higher retention of first-generation students.

Cell biology: Compartments and complexity
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists have taken a closer look at the subcellular distribution of proteins and metabolic intermediates in a model plant.

Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.

Cell biology: Dynamics of microtubules
Filamentous polymers called microtubules play vital roles in chromosome segregation and molecular transport.

The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.

Kinky biology
How and why proteins fold is a problem that has implications for protein design and therapeutics.

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.

Read More: Biology News and Biology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.