Nav: Home

Re-engineering life: New Phytologist Workshop on Synthetic Biology

June 06, 2012

Scientists from across the world will meet at the University of Bristol on 6 June 2012 for a New Phytologist Workshop on Synthetic Biology (http://www.newphytologist.org/synthetic). There, they will discuss recent advances in this rapidly evolving and controversial new field.

Synthetic biology made headlines in 2010 when researchers at the J Craig Venter Institute announced they had created the first 'synthetic cell'. Created by transferring an artificially constructed DNA sequence into an existing cell which had been stripped of its native DNA, the cell behaved like a member of the species dictated by the synthetic DNA. Since then, the ambition and scale of synthetic biology enterprises have increased even further.

One key principle in the field is the standardisation of 'biological parts' in order to construct synthetic genes, systems or even entire species from new. This is a concept more familiar to engineers than biologists and indeed, attendees at the meeting will have a range of backgrounds from engineering and medicine to plant biologists and industrial scientists.

The idea of breaking down genes, complex biological systems, into simplified building blocks which can be shared and altered freely before being applied to a vast range of tasks is an appealing one to both researchers and industrialists.

With a quickly expanding toolkit and unconstrained by the limits of traditional genetic modification techniques (where genes must already exist in nature to be utilised), synthetic biology offers the opportunity to synthesise completely 'custom' genomes for specific applications. Anne Osbourn, Associate Research Director at the prestigious John Innes Centre, Editor of the New Phytologist journal and an organiser of the workshop suggests that the range of applications of synthetic biology is huge.

'As just one example, synthetic biology has the potential to enable us to make fuels, pharmaceuticals, chemicals and novel biomaterials faster, better and cheaper,' Anne explains. 'It could provide new ways of improving life in developing countries, for example through the generation of biosensors that monitor water quality or allow early detection of disease outbreaks.'

Synthetic biology also offers huge potential benefits when applied in plants and scientists at the workshop will detail research topics ranging from ensuring food security through crop improvement to re-engineering plants for other uses such as producing superior polymers for industry or vaccines for medicine. One presentation at the workshop will focus on technology developed at the John Innes Centre that has already been used to produce a vaccine for the H5N1 avian flu virus.

However, as with genetic modification in the past there are groups with growing concerns about the use of synthetic biology. Drawing parallels with recent events at GM crop trials conducted at Rothamsted Research and attempts by scientists to engage with protestors there, speakers on the final day of the workshop will outline the need for scientists to take the opportunity to 'frame' the debate around synthetic biology at an early stage as was arguably failed to achieve by scientists working on GM in earlier decades.

In addition to bringing together scientists from the field, the workshop aims to make synthetic biology more accessible to the interested public by hosting the presentations and discussion on YouTube. 'Synthetic biology encourages scientists to work together with others to identify grand challenges faced by society and to collectively find solutions,' suggests Osbourn. 'To do this effectively it is essential that there is meaningful and productive engagement between scientists who engage in synthetic biology and the wider public. This is something that the synthetic biology community is committed to.'
-end-


Wiley

Related Synthetic Biology Articles:

Cell-free synthetic biology comes of age
In a review paper published in Nature Reviews Genetics, Professor Michael Jewett explores how cell-free gene expression stands to help the field of synthetic biology dramatically impact society, from the environment to medicine to education.
Scientists develop electrochemical platform for cell-free synthetic biology
Scientists at the University of Toronto (U of T) and Arizona State University (ASU) have developed the first direct gene circuit to electrode interface by combining cell-free synthetic biology with state-of-the-art nanostructured electrodes.
Gene-OFF switches tool up synthetic biology
Wyss researchers and their colloaborators have developed two types of programmable repressor elements that can switch off the production of an output protein in synthetic biology circuits by up to 300-fold in response to almost any triggering nucleotide sequence.
Tennessee researchers join call for responsible development of synthetic biology
Engineering biology is transforming technology and science. Researchers in the international Genome Project-write, including two authors from the UTIA Center for Agricultural Synthetic Biology, outline the technological advances needed to secure a safe, responsible future in the Oct.
Scientists chart course toward a new world of synthetic biology
A UC Berkeley team with NSF funding has compiled a roadmap for the future of synthetic or engineering biology, based on the input of 80 leaders in the field from more than 30 institutions.
DFG presents position paper on synthetic biology
Clear distinction between synthetic biology and underlying methods required / No new potential risks associated with current research work
Commandeering microbes pave way for synthetic biology in military environments
A team of scientists from the US Army Research Laboratory and the Massachusetts Institute of Technology have developed and demonstrated a pioneering synthetic biology tool to deliver DNA programming into a broad range of bacteria.
BioBits: Teaching synthetic biology to K-12 students
As biologists have probed deeper into the genetic underpinnings of life, K-12 schools have struggled to provide a curriculum that reflects those advances.
Sensor strategy a boon for synthetic biology
Rice University synthetic biologists have invented a technology to dial up or down the sensitivity of bacterial biosensors.
Drug-producing bacteria possible with synthetic biology breakthrough
Bacteria could be programmed to efficiently produce drugs, thanks to breakthrough research into synthetic biology using engineering principles, from the University of Warwick and the University of Surrey.
More Synthetic Biology News and Synthetic Biology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.