Nav: Home

New approach could make bone marrow transplants safer

June 06, 2016

Harvard Stem Cell Institute (HSCI) scientists have taken the first steps toward developing a treatment that would make bone marrow - blood stem cell - transplantation safer and, as a result, more widely available to the millions of people living with blood disorders like sickle cell anemia, thalassemia, and AIDS.

Bone marrow transplantation currently is the only curative therapy for these blood diseases. But, for the new, transplanted stem cells to do their work, the faulty stem cells must first be "evicted" or killed. Accomplishing that requires patients endure chemotherapy and radiation -- a vicious assault on the body with life-long consequences.

In a study recently published in the journal Nature Biotechnology, HSCI researchers at Harvard University and Massachusetts General Hospital (MGH), in collaboration with Boston Children's Hospital and Dana Farber Cancer Institute, have developed a non-toxic transplantation procedure using antibodies to specifically target blood stem cells in mice, an approach they hope will make blood stem cell transplants for these patients far less toxic.

The new treatment removes more than 98% of blood stem cells, making it as effective as chemotherapy and radiation.

"Instead of using non-targeted drugs that have lots of collateral damage we thought we could take advantage of the precision of the immune system, in particular, antibodies," said David Scadden, MD, Co-director of HSCI, the Gerald and Darlene Jordan Professor of Medicine at Harvard University, and senior author on the paper.

As part of the immune system, antibodies naturally seek and destroy foreign agents in the body. Rahul Palchaudhuri, a postdoctoral fellow in Scadden's lab and first author on the paper, armed CD45-targeting antibodies with a payload that destroys only existing blood cells. The payload kills cells by means other than genetic destruction, in contrast to the current standard treatments.

"Antibodies are remarkably specific in what they target," said Palchaudhuri, a chemist by training, with a background in cancer research. "We can direct them to CD45, a cell marker which is exclusively expressed in the blood system. That way we avoid toxicities to non-blood tissues."

Unlike chemotherapy and radiation -- which indiscriminately damage cells and tissues, healthy or otherwise -- the CD45-targeting antibodies leave the thymus and the bone marrow, environments critical to the formation of T cells and innate immune cells, unharmed. Animals receiving the antibody treatment were able to withstand infection that was lethal to mice treated with radiation. Currently, infections after transplant are common and may be severe, causing death in a substantial number of people.

About one in ten patients do not survive transplantation following the standard treatments. Those who do may suffer from stunted growth and intellectual development, infertility, and damaged DNA; at present, patients can only attempt a curative transplant by increasing their risk of developing cancer later.

Because of this, families and doctors often shrink from transplant options, particularly when it comes to treating children, and it will limit the extent to which the breakthroughs in gene therapy and gene editing will be applied, explained Scadden, who is a practicing hematologist at MGH and chairman of Harvard's Department of Stem Cell and Regenerative Biology.

Animals that received the antibody treatment had a broad ten-day window within which they could accept a bone marrow transplant, and individuals that did not receive a bone marrow transplant were able to fully recover without adverse effects. Furthermore, mice suffering from sickle cell anemia were successfully transplanted using the antibody method and cured of their anemia. Should the same hold true for humans, what amounts to months of recovery in a hospital bed may be replaced by an outpatient procedure, and a failed transplant would not be fatal.

"If this approach works in humans, it will really change the conversation that providers have with patients," Scadden said, especially for those "who have these underlying genetic disorders and for who the new gene-editing and gene therapy techniques are being developed."

The scientists are now trying to identify antibodies that would be effective in humans, and a company has been formed to move the work towards translation and determine which models are most useful in a preclinical setting.

"It brings precision medicine into the area of transplant in a way that hasn't been there and is needed," Scadden said.
-end-
This work was supported by the Harvard Blavatnik Biomedical Accelerator Fund and the National Institutes of Health.

Harvard Medical School

Related Immune System Articles:

Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
How the immune system protects us against bowel cancer
Researchers from Charité - Universitätsmedizin Berlin have discovered a protective mechanism which is used by the body to protect intestinal stem cells from turning cancerous.
How herpesviruses shape the immune system
DZIF scientists at the Helmholtz Zentrum München have developed an analytic method that can very precisely detect viral infections using immune responses.
More Immune System News and Immune System Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab