Nav: Home

New possible target for cancer treatment

June 06, 2017

Scientists at Karolinska Institutet in Sweden report that cancer cells and normal cells use different 'gene switches' in order to regulate the expression of genes that control growth. In mice, the removal of a large regulatory region linked to different types of cancer caused a dramatic resistance to tumour formation, but did not affect normal cell growth. The findings, published in the scientific journal eLife, highlight the possibility of developing highly specific cancer drugs with fewer side effects.

Humans have close to 20,000 genes to carry out all the functions in a cell. The genes make up only 2 per cent of a cell's total DNA. What makes us different from one another is mainly the variation in the remaining 98 per cent of our DNA. The variation is believed to alter the activity of regulatory regions or 'gene switches' (enhancer elements), which control the activity levels of genes in a cell. It is this variation that is mainly responsible for making individuals more or less susceptible to the development of diseases such as cancer.

In the current study, using mice, scientists have analysed a large gene switch region that is linked to the risks of developing many different types of cancer, including prostate, breast, colon, bladder and thyroid cancers as well as chronic lymphocytic leukaemia and myeloma. The variation in this region accounts for far more cancer-related deaths than inherited mutations in well-known cancer-causing genes. It is currently unclear why cancer cells use these particular switches, and whether they have any function in normal cells.

The scientists turned the gene switches off by removing this region from the mouse genome, and found that its loss has no effect on normal mouse development and growth. Although removing the gene switch region brought down the levels of the nearby cancer gene Myc, the mice remained normal and healthy. However, the mice were strongly resistant to the formation of breast tumours and tumours in the intestine.

According to the scientists, these results show that normal cells can function and divide without the genetic elements that are needed for the growth of cancer cells. The study therefore highlights the possibility of developing highly specific cancer drugs.

"Since we find that the growth of normal and cancer cells is driven by different gene switches, we can in principle aim at switching off the system for growth only in the cancer cells without any harmful effect on the growth of normal cells. This can lead to the development of highly specific approaches for cancer therapy with much lower toxic side effects", says Professor Jussi Taipale at Karolinska Institutet's Department of Medical Biochemistry and Biophysics who led the study.
-end-
The work was supported by the Center for Innovative Medicine at Karolinska Institutet, the Knut and Alice Wallenberg Foundation and the EU FP7 Health project SYSCOL.

Publication: "Mice deficient of Myc super-enhancer region reveal differential control mechanism between normal and pathological growth", Kashyap Dave, Inderpreet Sur, Jian Yan, Jilin Zhang, Eevi Kaasinen, Fan Zhong, Leander Blaas, Xiaoze Li, Shabnam Kharazi, Charlotte Gustafsson, Ayla De Paepe, Robert Månsson and Jussi Taipale, eLife online 6 June 2017.

Karolinska Institutet

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...