A novel approach to seeing dengue infection in the body

June 06, 2017

Singapore, 6 June 2017 - Commonly used to detect solid tumours, positron emission tomography (PET) paired with the glucose metabolism probe, fluorodeoxyglucose (FDG), is considered 'old' technology in the field of cancer. A team from Duke-NUS Medical School (Duke-NUS) and Singapore General Hospital (SGH) has now found a new use for this 'old' technology in another field: infectious diseases research. Using FDG-PET as an imaging tool for dengue infection in mouse models, the team has potentially uncovered a novel and non-invasive way to track the infection in real-time and more accurately assess the effectiveness of new treatments for dengue.

Similar to how radar is able to track and visualise where ships are in the ocean, PET is able to track and visualise where in the body glucose is taken up by cells. FDG is a radioactive version of glucose, which when injected into a mouse and absorbed by cells, can be seen using PET. Inflammation of the small and large intestines is known to occur in dengue-infected mice, and with it cellular uptake of glucose and FDG increases. Knowing this, the team set out to use PET-FDG to visualise inflammation as a marker of dengue infection in mice.

"To our knowledge, this is the very first time PET has been systematically evaluated in the field of acute viral infectious diseases. We are excited to be able to repurpose this non-invasive technology, and generate such robust images of live dengue infection in the body," commented the lead author of the study, Duke-NUS Assistant Professor Ann-Marie Chacko from the Cancer and Stem Cell Biology Programme, and head of the Duke-NUS for Translational and Molecular Imaging (LTMI).

Not only was increased inflammation observed in the spleen, and small and large intestines of dengue-infected mice, but the inflammation subsided after antivirals were given. In addition, tracking glucose uptake with FDG-PET predicted the progression and severity of dengue infection, as well as the effectiveness of treatment.

"Being able to visualise dengue infection in the body potentially transforms how the effectiveness of new dengue therapeutics is assessed. We look forward to collaborating with academic and industry partners who are looking to validate their new dengue therapeutics using this novel approach," added Professor Subhash Vasudevan from the Emerging Infectious Diseases Programme at Duke-NUS and senior author of the publication.

Dr Jenny Low, Senior Consultant with the Department of Infectious Diseases at SGH and a clinician on the research team explained, "Traditionally, in research, the amount of virus in the blood is measured and used as an indicator of disease severity. What makes the findings of this study so ground-breaking is that we may have a non-invasive way to track dengue infections in our patients more accurately during clinical trials to better measure if the experimental treatment given is effective."

Whether the basic laboratory findings are translatable to dengue patients hinges on a joint SGH/Duke-NUS study led by Dr Shirin Kalimuddin, Consultant with the Department of Infectious Diseases, SGH. This clinical study is currently recruiting dengue patients as volunteers. Ultimately, the hope is that non-invasive PET-FDG imaging can be used to transform the assessment of new dengue treatments in clinical trials so that infections may be more effectively treated in the clinic. To find out more about this study, please contact study coordinator, Ms Ang Sze Chien at (65) 9848 9297.
-end-
Published on 4 May 2017 in Journal of Clinical Investigation Insight, this research is supported by Duke-NUS start-up funds, Duke-NUS Khoo Pilot Award, the Singapore Ministry of Health's National Medical Research Council under its Clinical Trials Grants scheme (NMRC/CTGCoD/0001/2015) and Cooperative Basic Research Grant scheme (NMRC/CBRG/0103/2016 ), as well as the National Research Foundation Singapore under its Open Fund - Young Individual Research Grant (NMRC/OFYIRG/0003/2016) and administered by the Singapore Ministry of Health's National Medical Research Council.

Duke-NUS Medical School

Related Infectious Diseases Articles from Brightsurf:

Understanding the spread of infectious diseases
Physicists at M√ľnster University (Germany) have shown in model simulations that the COVID-19 infection rates decrease significantly through social distancing.

Forecasting elections with a model of infectious diseases
Election forecasting is an innately challenging endeavor, with results that can be difficult to interpret and may leave many questions unanswered after close races unfold.

COVID-19 a reminder of the challenge of emerging infectious diseases
The emergence and rapid increase in cases of coronavirus disease 2019 (COVID-19), a respiratory illness caused by a novel coronavirus, pose complex challenges to the global public health, research and medical communities, write federal scientists from NIH's National Institute of Allergy and Infectious Diseases (NIAID) and from the Centers for Disease Control and Prevention (CDC).

Certain antidepressants could provide treatment for multiple infectious diseases
Some antidepressants could potentially be used to treat a wide range of diseases caused by bacteria living within cells, according to work by researchers in the Virginia Commonwealth University School of Medicine and collaborators at other institutions.

Opioid epidemic is increasing rates of some infectious diseases
The US faces a public health crisis as the opioid epidemic fuels growing rates of certain infectious diseases, including HIV/AIDS, hepatitis, heart infections, and skin and soft tissue infections.

Infectious diseases could be diagnosed with smartphones in sub-Saharan Africa
A new Imperial-led review has outlined how health workers could use existing phones to predict and curb the spread of infectious diseases.

The Lancet Infectious Diseases: Experts warn of a surge in vector-borne diseases as humanitarian crisis in Venezuela worsens
The ongoing humanitarian crisis in Venezuela is accelerating the re-emergence of vector-borne diseases such as malaria, Chagas disease, dengue, and Zika virus, and threatens to jeopardize public health gains in the country over the past two decades, warn leading public health experts.

Glow-in-the-dark paper as a rapid test for infectious diseases
Researchers from Eindhoven University of Technology (The Netherlands) and Keio University (Japan) present a practicable and reliable way to test for infectious diseases.

Math shows how human behavior spreads infectious diseases
Mathematics can help public health workers better understand and influence human behaviors that lead to the spread of infectious disease, according to a study from the University of Waterloo.

Many Americans say infectious and emerging diseases in other countries will threaten the US
An overwhelming majority of Americans (95%) think infectious and emerging diseases facing other countries will pose a 'major' or 'minor' threat to the U.S. in the next few years, but more than half (61%) say they are confident the federal government can prevent a major infectious disease outbreak in the US, according to a new national public opinion survey commissioned by Research!America and the American Society for Microbiology.

Read More: Infectious Diseases News and Infectious Diseases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.