Nav: Home

Neutrino discovery: A step closer to finding CP violation

June 06, 2017

The different rates of neutrino and anti-neutrino oscillations recorded by an international collaboration of researchers in Japan--including from Kavli IPMU--is an important step in the search for a new source of asymmetry in the laws that govern matter and antimatter.

The Standard Model of particle physics describes the basic building blocks of matter and how they interact. It also makes a point that for every particle created, there is an anti-particle. However, the Standard Model does not explain why our Universe still exists today, since the matter and anti-matter symmetry implies that matter--including galaxies, stars, and even humans--should have been annihilated by the equal amounts of anti-matter.

This violation of symmetry, called the charge-parity (CP) violation, has been observed experimentally, but not enough to explain the large amount of matter existing in the Universe.

The international T2K (Tokai-to-Kamioka) collaboration is the first experiment in the world that can search for CP violation by studying neutrino and anti-neutrino oscillations. High intensity beams of muon neutrinos (or muon anti-neutrinos) are produced at J-PARC (Japan Proton Accelerator Research Complex) on Japan's east coast, and fired towards the Super-Kamiokande detector 295 km away in Gifu Prefecture. On the way, the neutrinos and anti-neutrinos spontaneously change 'flavor' from muon neutrinos or anti-neutrinos, to electron neutrinos or anti-neutrinos. A difference in the rates of oscillations in separate neutrino and anti-neutrino beams would be proof of an imbalance between particles and anti-particles, and that there is new physics to be learned beyond the Standard Model.

The first data set by T2K was published in April, and detected 32 electron neutrinos and 4 electron anti-neutrinos.

"While the data sets are still too small to make a conclusive statement, we have seen a weak preference for large CP violation and we are excited to continue to collect data and make a more sensitive search for CP violation," said T2K collaborator and Kavli IPMU Project Assistant Professor Mark Hartz.

Recently, the T2K experiment has finished collecting another set of data that has doubled the amount of data available in the electron neutrino configuration, and its results are expected to be presented later this year. Hartz has said they expect to continue to take data for another 10 years.

"If we are lucky and the CP violation effect is large, we may expect 3 sigma evidence, or about 99.7% confidence level, for CP violation by 2026," he said.

Details of T2K's most recent results using neutrino and anti-neutrino data were published in Physical Review Letters as an Editors Suggestion on April 10.

Kavli Institute for the Physics and Mathematics of the Universe

Related Neutrinos Articles:

Borexino sheds light on solar neutrinos
For more than ten years, the Borexino Detector located 1,400 meters below surface of the Italian Gran Sasso massif has been exploring the interior of our Sun.
A first 'snapshot' of the complete spectrum of neutrinos emitted by the sun
About 99 percent of the sun's energy emitted as neutrinos is produced through nuclear reaction sequences initiated by proton-proton (pp) fusion in which hydrogen is converted into helium, say scientists including physicist Andrea Pocar at the University of Massachusetts Amherst.
Study of high-energy neutrinos again proves Einstein right
A new study by MIT and others proves Einstein is right again.
A blazar is a source of high-energy neutrinos
A celestial object known as a blazar is a source of high-energy neutrinos, report two new studies.
Blazar accelerates cosmic neutrinos to highest energies
For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos.
More Neutrinos News and Neutrinos Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...