Nav: Home

Keeping the hydrogen coming

June 06, 2017

A novel molybdenum-coated catalyst that can efficiently split water in acidic electrolytes is developed by researchers at KAUST and could help with efficient production of hydrogen.

When burned, hydrogen is converted into water and heat to make an entirely clean power source. Thus, in the quest for greener power, there is an urgent need for a sustainable and efficient means of producing it. One way is to split water using a process known as photocatalytic hydrogen evolution: water molecules are split into hydrogen and oxygen using only sunlight to provide the necessary energy. In this sense, hydrogen acts as a means of storing solar energy.

Scientists are searching for ways of improving this water-splitting reaction by developing an optimal catalyst. While many different materials have been tried, they are usually adversely affected by the oxygen that is also created alongside the hydrogen during the process. The two gaseous products can easily recombine back to water due to reverse water-forming reactions, hindering the production of hydrogen.

Angel Garcia-Esparza and Tatsuya Shinagawa--two former KAUST Ph.D. students as leading researchers supervised by Associate Professor of Chemical Science Kazuhiro Takanabe--collaborated with other colleagues from the Catalysis Center and other specialists in the University to create a hydrogen-evolution reaction catalyst that is both acid-tolerant and selectively prevents the water-reforming reaction1.

"The development of acid-tolerant catalysts is an important challenge because most materials are not stable and quickly degrade in the acidic conditions that are favorable for hydrogen generation," says Garcia-Esparza.

Because the acidity of the solution was crucial for the stability of the material, the team took the time to establish the optimal pH level between 1.1 and 4.9. They then electro-coated molybdenum onto a standard platinum electrode catalyst in a mildly acidic solution.

Comparing the performance of the photocatalyst with and without the molybdenum coating, the team showed that without molybdenum the rate of hydrogen production eventually plateaued after 10 hours of operation under illumination by ultraviolet light. However, the introduction of molybdenum prevented this fall in performance. The researchers believe that this is because the molybdenum acts as a gas membrane, preventing oxygen from reaching the platinum and disrupting its catalytic performance.

"The main challenge for most catalysts is the long-term stability of the materials" explained Garcia-Esparza. "So it is an important step to have an acid-tolerant material capable of preventing the water-forming back reaction that slows down water splitting."

"Nevertheless, we are still far from a commercial device and more work needs to be done," said Garcia-Esparza.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Hydrogen Articles:

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.
Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.
Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.
Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.
World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
New catalyst produces cheap hydrogen
QUT chemistry researchers have discovered cheaper and more efficient materials for producing hydrogen for the storage of renewable energy that could replace current water-splitting catalysts.
More Hydrogen News and Hydrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.