Newly discovered disease mechanism for type 2 diabetes

June 06, 2017

A newly discovered mechanism behind reduced insulin production in type 2 diabetes is now being presented. In an article in Nature Communications, researchers at Sahlgrenska Academy describe how insulin-producing cells regress in their development, become immature, and do not work properly. A finding that opens the doors to new clinical treatments.

"If you can affect things at the cellular level and restore the body's own rapid regulation, you can more accurately adjust blood sugar compared to what is possible with insulin injections," says Anders Rosengren, associate professor who is active at the Department of Neuroscience and Physiology as well as the Wallenberg Centre for Molecular and Translational Medicine at the University of Gothenburg.

It has long been known that the insulin-producing cells fail in type 2 diabetes. The body does not get enough insulin and blood sugar rises. One theory argues that the insulin-producing cells become fewer in number, while another argues that their function is impaired.

The new explanation, which combines the debated theories, states that the insulin-producing cells regress in their development and become immature. This reduces the number of functional cells.

The gene that drives the process

With the help of 124 tissue samples, of which 41 were from people with type 2 diabetes, the researchers were able to determine which genetic changes in the cells affected the course of the disease the most. Anders Rosengren describes the analysis by comparing it to the world of air travel.

"All airports are connected in a large network, but a disruption at a hub like Frankfurt Airport is much more serious than a disruption in Gothenburg. We searched out the hubs, i.e. the key genes, and the major links. Of almost 3,000 genes that were changed in diabetes, 168 could be described as Frankfurt genes. It was these we focused on," he says.

As the analysis continued, it showed that the gene SOX5, which was previously unknown in a diabetes context, affects the disease.

"If you experimentally suppress and deactivate SOX5, the function of the 168 genes deteriorate and the cells decrease in maturity. If you then increase the levels of SOX5, the 168 genes also increase and insulin delivery can be normalized," explains Anders Rosengren.

"It's very exciting to see. It was almost like a volume control, where you could increase or decrease the maturity level of the insulin-producing cells.

Existing medicines

According to Anders Rosengren, it will not be long until we see medicines that restore the maturity of insulin-producing cells. They may already exist in the form of medicines used for other diseases.

At the same time, he emphasizes the importance that healthy lifestyle habits play in type 2 diabetes. Current research shows that SOX5 decreases if you eat unhealthy foods or exercise too little.

"It is important to remember that everyone is different. Some manage a long time despite unhealthy lifestyle habits. For others, the tipping point is much earlier. But, regardless of genetic conditions, you can do something about your disease," says Anders Rosengren.
-end-
Link to article: https://www.nature.com/articles/ncomms15652

Principle investigator: Anders Rosengren +46 (0)705 316 704; anders.rosengren@gu.se

Portrait: Johan Wingborg

Press contact: Margareta Gustafsson Kubista +46 (0)705 301 980; margareta.g.kubista@gu.se

University of Gothenburg

Related Diabetes Articles from Brightsurf:

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Diabetes, but not diabetes drug, linked to poor pregnancy outcomes
New research indicates that pregnant women with pre-gestational diabetes who take metformin are at a higher risk for adverse pregnancy outcomes -- such as major birth defects and pregnancy loss -- than the general population, but their increased risk is not due to metformin but diabetes.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.