How killer cells take out tumors

June 06, 2017

The promising drug is known as F8-TNF. When injected into the bloodstream, it lures killer cells from the body's immune system towards sarcomas. The killer cells then destroy the tumours. Researchers from ETH Zurich, led by Professor Dario Neri at the Institute of Pharmaceutical Sciences, developed F8-TNF four years ago. Since then, they have been able to show that it can completely cure sarcomas in mice when combined with a chemotherapeutic agent. Such an effective treatment cannot be achieved by chemotherapy alone or with other therapeutic approaches. Now, a drug closely related to F8-TNF is being tested as part of clinical trials in humans.

Consisting of two sub-units, the F8-TNF molecule works rather like a store detective: just as a detective tracks down a shoplifter and detains it until the police arrive, the molecule identifies cancer cells using its F8 sub-unit and then uses its TNF part to lure killer cells (cytotoxic T cells). TNF is an immune system messenger.

Implanted into the genome

Much of the molecule's mechanism of action was hitherto unclear, but the scientists in Neri's group have now succeeded in working it out. They wanted to find out how the killer cells recognise the tumour after they are lured to it. Although the messenger TNF alerts the killer cells to the tumour's presence, it does not provide them with a specific tumour identifier.

The scientists discovered that the killer cells called by F8-TNF are guided by proteins from specific dormant viruses (endogenous retroviruses). The genetic blueprint of these viruses has implanted itself into the mouse genome during evolution. In many cancer cells, the viral proteins are brought to life. Fragments of these retroviral proteins on the surface of tumour cells allow the killer cells to distinguish cancer cells from healthy cells.

Immune protection against cancer

In addition, the scientists observed that mice where the sarcomas were cured with F8-TNF rejected tissue later transplanted from various types of tumour. "The mice appeared to have acquired a sort of immune protection against cancer. As it turned out, this protection is also due to the killer cells, which recognise the tumour cells with the help of dormant viral proteins," says Philipp Probst, a doctoral student in Neri's group.

In cancer immunotherapy, the body's immune system is activated in order to combat tumours. In the past, many scientists assumed that the killer cells used modified proteins on the surface of tumour cells as an identifier and a point of attack. Tumours are a degenerate form of body tissue; they are formed as a result of certain genetic mutations in a precursor cell, which can lead to protein modifications. "In some cases, mutated proteins can indeed be the distinguishing criterion," says Neri. "In our paper, however, we confirm that killer cells can also use other distinguishing criteria, namely the presence or absence of retroviral proteins."

Aid to understanding

"Now we cannot only cure sarcomas in mice, but also know the mechanism behind this therapy," says Probst. In the relatively new field of cancer immunotherapy, it is important to understand the underlying mechanisms in order to predict which patients will respond best to which therapy.

Further research will be needed to find out whether the observations in mice also apply to humans, as the human genome is full of gene sequences from dormant viruses. In any case, the knowledge may be useful in the interpretation of clinical trials. The third and final phase clinical trials in humans for the active agent L19-TNF, which is related to F8-TNF, will soon begin in Germany; in the US, applications for such trials are currently being examined by the authorities.

More than 100 years ago, New York-based doctor William Coley had already observed that some sarcoma patients recovered spontaneously. These were all patients suffering not only from cancer but also from a bacterial infection. Coley attempted to convert his observation into a therapeutic approach and began to inject sarcoma patients with a cocktail of heat-inactivated bacteria. His experiments were successful and "Coley's toxin" became the therapy of choice for sarcoma patients in the early decades of the 20th century. Although it was later displaced to some extent by radiotherapy and the emerging field of chemotherapy, "Coley's toxin" was still manufactured in Germany until 1990.

In Coley's time, knowledge was not yet advanced enough to understand his cocktail's mechanism of action. From today's perspective, one must assume that the inactivated bacteria triggered an immune response and thus the formation of the messenger TNF. In turn, this messenger activated killer cells that fought the tumour.
-end-
Reference

Probst P, Kopp J, Oxenius A, Colombo MP, Ritz D, Fugmann T, Neri D: Sarcoma eradication by doxorubicin and targeted TNF relies upon CD8+ T cell recognition of a retroviral antigen. Cancer Research, 8 May 2017, doi: 10.1158/0008-5472.can-16-2946 [http://dx.doi.org/10.1158/0008-5472.can-16-2946]

ETH Zurich

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.