New sound diffuser is 10 times thinner than existing designs

June 06, 2017

Researchers from North Carolina State University and Nanjing University have developed an "ultra-thin" sound diffuser that is 10 times thinner than the widely used diffusers found in recording studios, concert venues and movie theaters to reduce echoes and improve the quality of sound. The new design uses less material, which would reduce cost, as well as taking up far less space.

In a typical room with flat walls, sound waves usually bounce off the walls, like light reflecting off a mirror. This creates echoes and overlapping sound waves that result in uneven sound quality depending on where you are in the room.

"Sound diffusers are panels placed on the walls and ceiling of a room to scatter sound waves in many different directions, eliminating echoes and undesirable sound reflections - ultimately improving the quality of the sound," says Yun Jing, an assistant professor of mechanical and aerospace engineering at NC State and corresponding author of a paper on the work.

But the most widely used diffusers, called Schroeder diffusers, can be very bulky. That's because the size of a diffuser is governed by the wavelength of the sound it needs to diffuse. Specifically, the depth of a Schroeder diffuser is about half of the wavelength of the lowest sound it needs to diffuse.

For example, a typical man's voice can be as low as 85 hertz, with a wavelength of 4 meters or 13.1 feet. If that's the lowest sound the Schroeder diffuser will have to deal with, the diffuser would need to be roughly 2 meters - or just over 6.5 feet - thick.

But the new, ultra-thin diffuser design requires a thickness that is only 5 percent of the sound's wavelength. So, instead of being 2 meters thick, it would only be 20 centimeters - or less than 8 inches - thick.

"Diffusers are often made out of wood, so our design would use 10 times less wood than the Schroeder diffuser design," Jing says. "That would result in lighter, less expensive diffusers that allow people to make better use of their space."

This reduction in diffuser thickness is made possible by the design of the individual cells in the diffuser.

A Schroeder diffuser looks like a panel of evenly spaced squares, which are identical in length and width, but vary in depth.

The ultra-thin diffuser also consists of evenly spaced squares, but the squares appear to be of different sizes. That's because each of the squares is actually an aperture that opens into a thin, underlying chamber. These chambers all have identical dimensions, but the size of the apertures varies significantly - accomplishing the same sound diffusion as the much larger Schroeder diffusers.

"We've built fully functional prototypes using a 3-D printer, and it works," Jing says. "The design should work just as well using wood."
The paper, "Ultra-thin Acoustic Metasurface-Based Schroeder Diffuser," is published in the American Physical Society journal Physical Review X. Lead authors of the study are Yifan Zhu and Xudong Fan of Nanjing University. The paper was co-authored by Bin Liang and Jianchun Cheng of Nanjing University.

North Carolina State University

Related Sound Waves Articles from Brightsurf:

Sound waves power new advances in drug delivery and smart materials
Sound waves have been part of science and medicine for decades, but the technologies have always relied on low frequencies.

Scientists make sound-waves from a quantum vacuum at the Black Hole laboratory
Researchers have developed a new theory for observing a quantum vacuum that could lead to new insights into the behaviour of black holes.

Remembrance of waves past: memory imprints motion on scattered waves
Now, it appears that between relativity and the classical (stationary) wave regime, there exists another regime of wave phenomena, where memory influences the scattering process.

Even if you want to, you can't ignore how people look or sound
Your perceptions of someone you just met are influenced in part by what they look like and how they sound.

Scientists achieve major breakthrough in preserving integrity of sound waves
In a breakthrough experiment, physicist and engineers at the CUNY ASRC have shown that it is possible to limit the movement of sound to a single direction without interruption even when there are deformations along the pathway.

Shaking light with sound
Combining integrated photonics and MEMS technology, scientists from EPFL and Purdue University demonstrate monolithic piezoelectric control of integrated optical frequency combs with bulk acoustic waves.

Sound waves transport droplets for rewritable lab-on-a-chip devices
Engineers at Duke University have demonstrated a versatile microfluidic lab-on-a-chip that uses sound waves to create tunnels in oil to digitally manipulate and transport droplets.

A sound treatment
University of Utah biomedical engineering assistant professor Jan Kubanek has discovered that sound waves of high frequency (ultrasound) can be emitted into a patient's brain to alter his or her state.

Light, sound, action: Extending the life of acoustic waves on microchips
Data centres and digital information processors are reaching their capacity limits and producing heat.

Cooling magnets with sound
Today, most quantum experiments are carried out with the help of light, including those in nanomechanics, where tiny objects are cooled with electromagnetic waves to such an extent that they reveal quantum properties.

Read More: Sound Waves News and Sound Waves Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to