A method to improve in vitro tests

June 06, 2017

Before new nanoparticles or other nanomedicines can be injected into the human body, a whole series of tests must be conducted in the laboratory, then in living cells, and in the end on humans. But often the results obtained in vitro do not resemble what actually happens in the animal or human body. Thus, the researchers reconsidered the basis of the in vitro experimental design.

In an article published in the journal Small, EPFL researchers explain how such issues can be avoided by replacing conventional static in vitro tests with dynamic tests that approximate complex living conditions - comparable to those that occur in the body's blood and lymphatic systems.

The researchers were able to "replicate" the varying real-body conditions in a lab, and test the behaviour of nanoparticles in different blood and lymph flows. They also reproduced the "cleaning" effect of nanoparticles, which go through in lymph nodes, by "washing" lymph off them and reinjecting them into the blood serum.

"Current incubation conditions are static," says Marijana Mionic Ebersold, a former post-doc at EPFL, leading author of the study in the framework of a Nano-Tera project and currently working as a scientific collaborator at the University Hospital of Lausanne (CHUV). "Nanoparticles or drugs to be tested are carefully added to the typically static fluids and cells, and then there is a waiting period in static conditions before the interaction and the effects can be studied for instance under the microscope", she adds. "In the human body, fluids and cells never stay nicely static. It's an extremely dynamic and complex environment. The conventional static in vitro methods do not therefore allow for the translation of results from in vitro to in vivo testing."

Reproducing the conditions in blood and lymphatic systems

For their study, the researchers used the protein corona as the parameter which reflects this in vitro/in vivo discrepancy. The protein corona forms around nanoparticles when they come into contact with a biological environment. Its presence influences the behaviour of nanoparticles in the body by altering their chemical properties, destination, and their interactions with other cells.

The protein corona is affected by both the flow and type of fluid, i.e. blood or lymph, as the study shows. "Surprisingly, the influence of lymph on the protein corona and the fate of nanoparticles has so far been completely neglected - although subcutaneously injected nanomedicines immediately contact the patient's lymph", says Mioni? Ebersold.

The study revealed that a change in both the flow and fluids is an extremely important factor when it comes to the formation of the protein corona. For example, the flow conditions would change and the protein corona would be different in a patient with different blood pressure troubles as compared to a healthy person. Nanoparticles may thus behave quite differently and in various patients and have different effects on them.

Dynamic tests would therefore be extremely useful for observing the formation of the protein corona in various in vitro environments in order to predict how the nanoparticles will ultimately behave in vivo. "When in vivo results are different to in vitro results, scientists tend to say that they tested their nanomedicine in the wrong animal model or that the chemicals weren't exactly the same etc.," says Mioni? Ebersold. "We think that the problem begins much earlier, with the in vitro tests that are performed at the starting point of translational nanomedicine: their static design is what often accounts for the discrepancies with the later in vivo tests."
Source: Protein corona: impact of lymph vs blood in a complex in vitro environnent
Powder Technology Laboratory

Ecole Polytechnique Fédérale de Lausanne

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.