Nav: Home

A method to improve in vitro tests

June 06, 2017

Before new nanoparticles or other nanomedicines can be injected into the human body, a whole series of tests must be conducted in the laboratory, then in living cells, and in the end on humans. But often the results obtained in vitro do not resemble what actually happens in the animal or human body. Thus, the researchers reconsidered the basis of the in vitro experimental design.

In an article published in the journal Small, EPFL researchers explain how such issues can be avoided by replacing conventional static in vitro tests with dynamic tests that approximate complex living conditions - comparable to those that occur in the body's blood and lymphatic systems.

The researchers were able to "replicate" the varying real-body conditions in a lab, and test the behaviour of nanoparticles in different blood and lymph flows. They also reproduced the "cleaning" effect of nanoparticles, which go through in lymph nodes, by "washing" lymph off them and reinjecting them into the blood serum.

"Current incubation conditions are static," says Marijana Mionic Ebersold, a former post-doc at EPFL, leading author of the study in the framework of a Nano-Tera project and currently working as a scientific collaborator at the University Hospital of Lausanne (CHUV). "Nanoparticles or drugs to be tested are carefully added to the typically static fluids and cells, and then there is a waiting period in static conditions before the interaction and the effects can be studied for instance under the microscope", she adds. "In the human body, fluids and cells never stay nicely static. It's an extremely dynamic and complex environment. The conventional static in vitro methods do not therefore allow for the translation of results from in vitro to in vivo testing."

Reproducing the conditions in blood and lymphatic systems

For their study, the researchers used the protein corona as the parameter which reflects this in vitro/in vivo discrepancy. The protein corona forms around nanoparticles when they come into contact with a biological environment. Its presence influences the behaviour of nanoparticles in the body by altering their chemical properties, destination, and their interactions with other cells.

The protein corona is affected by both the flow and type of fluid, i.e. blood or lymph, as the study shows. "Surprisingly, the influence of lymph on the protein corona and the fate of nanoparticles has so far been completely neglected - although subcutaneously injected nanomedicines immediately contact the patient's lymph", says Mioni? Ebersold.

The study revealed that a change in both the flow and fluids is an extremely important factor when it comes to the formation of the protein corona. For example, the flow conditions would change and the protein corona would be different in a patient with different blood pressure troubles as compared to a healthy person. Nanoparticles may thus behave quite differently and in various patients and have different effects on them.

Dynamic tests would therefore be extremely useful for observing the formation of the protein corona in various in vitro environments in order to predict how the nanoparticles will ultimately behave in vivo. "When in vivo results are different to in vitro results, scientists tend to say that they tested their nanomedicine in the wrong animal model or that the chemicals weren't exactly the same etc.," says Mioni? Ebersold. "We think that the problem begins much earlier, with the in vitro tests that are performed at the starting point of translational nanomedicine: their static design is what often accounts for the discrepancies with the later in vivo tests."
-end-
Source: Protein corona: impact of lymph vs blood in a complex in vitro environnent
Powder Technology Laboratory
Nano-tera

Ecole Polytechnique Fédérale de Lausanne

Related Nanoparticles Articles:

Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
Study models new method to accelerate nanoparticles
In a new study, researchers at the University of Illinois and the Missouri University of Science and Technology modeled a method to manipulate nanoparticles as an alternative mode of propulsion for tiny spacecraft that require very small levels of thrust.
Actively swimming gold nanoparticles
Bacteria can actively move towards a nutrient source -- a phenomenon known as chemotaxis -- and they can move collectively in a process known as swarming.
Nanoparticles take a fantastic, magnetic voyage
MIT engineers have designed tiny robots that can help drug-delivery nanoparticles push their way out of the bloodstream and into a tumor or another disease site.
Quantum optical cooling of nanoparticles
One important requirement to see quantum effects is to remove all thermal energy from the particle motion, i.e. to cool it as close as possible to absolute zero temperature.
Nanoparticles help realize 'spintronic' devices
For the first time researchers have demonstrated a new way to perform functions essential to future computation three orders of magnitude faster than current commercial devices.
Directed evolution builds nanoparticles
Directed evolution is a powerful technique for engineering proteins. EPFL scientists now show that it can also be used to engineer synthetic nanoparticles as optical biosensors, which are used widely in biology, drug development, and even medical diagnostics such as real-time monitoring of glucose.
What happens to magnetic nanoparticles once in cells?
Although magnetic nanoparticles are being used more and more in cell imaging and tissue bioengineering, what happens to them within stem cells in the long term remained undocumented.
Watching nanoparticles
Stanford researchers retooled an electron microscope to work with visible light and gas flow, making it possible to watch a photochemical reaction as it swept across a nanoparticle the size of a single cold virus.
Nanoparticles to treat snakebites
Venomous snakebites affect 2.5 million people, and annually cause more than 100,000 deaths and leave 400,000 individuals with permanent physical and psychological trauma each year.
More Nanoparticles News and Nanoparticles Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab