Nav: Home

Can you hear me now?

June 06, 2017

When trying to be heard over noise, humans and animals raise their voices. It's a split-second feat, from ear to brain to vocalization, and Johns Hopkins University researchers are the first to measure just how fast it happens in bats: 30 milliseconds. That's just a tenth of the time it takes to blink an eye, and a record for audio-vocal response.

Because this action, known as the Lombard effect, happens so very fast, the researchers were also able to solve a longtime mystery regarding the neural mechanism behind it. In a paper published online this week by the journal Proceedings of the National Academy of Sciences, they conclude it must be a fundamental temporal reflex rather than, as previously thought, a deeper cognitive behavior that would take more processing time. The findings, which shed light on the underpinnings of human speech control, also reveal how species as diverse as fish, frogs, animals and people share the ability to be heard over the fray.

"Scientists have been wondering for a century: Could there be a common auditory process to explain how this phenomenon happens in fish to frogs to birds to humans, species with wildly different hearing systems?" said co-author Ninad Kothari, a Johns Hopkins graduate student in psychological and brain sciences. "We resolved this question."

The new information could lead to better treatment for diseases where the Lombard effect can be amplified, such as Parkinson's disease, and could also help to build assistive medical devices.

The researchers studied bats, which rely on sonar-like echolocation -- emitting sounds and listening for echoes -- to detect, track, and catch prey. Unlike humans, whose vocalizations are comparatively long and slow, bats are ideal for such a sensorimotor study. Their high-frequency chirps, undetectable to the human ear, are quick and precise, allowing researchers to test the limits of a mammalian brain.

The team trained big brown bats to remain perched on a platform while tracking insects moving towards them on a tether. While the bat hunted the insect, the researchers recorded the bat's vocalizations with an array of 14 microphones. Sometimes the researchers allowed the bat to hunt in silence, other times they played bursts of interfering white noise, at varying intensities, from a speaker positioned in front of the bat.

The white noise interfered with the bat's echolocation and caused the bat to emit louder and louder chirps, not unlike someone trying to be heard, first over a loud radio, then over the clamor of a lawn mower and then over the blare of a passing fire engine. When the noise stopped, the bat would stop shouting, so to speak, and vocalize at a more typical level.

The researchers, who were able to create a computational model for the Lombard effect that applies to all vertebrates, concluded that the brain of a bat, or a person, or a fish, constantly monitors background noise and adjusts the vocal level as necessary.

First the auditory system detects background noise. The auditory system then measures the sound pressure level and adjusts the vocalization amplitude to compensate. When the background noise ends, the sound pressure level dissipates, and so does the level of vocalization.

This entire elaborate process happens in just 30 milliseconds, the authors found. Even in terms of near-instantaneous brain reactions, they call this reflex "remarkably short."

"Typically, we breathe every three to five seconds, our heart beats once per second, and eye blinking takes one third of a second. If we believe that eye blinking is fast, the speed at which an echolocating bat responds to ambient noise is truly shocking: 10 times faster than we blink our eyes," said lead author Jinhong Luo, a Johns Hopkins postdoctoral fellow.

Scientists had believed the Lombard effect was much slower: about 150 milliseconds for birds and bats and approximately150 to 175 milliseconds for humans.

"Our study features echolocating bats as valuable animal models for understanding connections between hearing and vocalizations, including speech control in humans," said Cynthia Moss, a Johns Hopkins professor of psychological and brain sciences and of neuroscience and a co-author.
-end-
Support for this research came from the National Science Foundation (IOS-1010193 and IOS-1460149), the Human Frontiers Science Program (RGP0040 and LT000279/2016-L9, the Office of Naval Research (N00014-12-1-0339), and the Air Force Office of Scientific Research (FA9550-14-1-0398). Related video.

Johns Hopkins University

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...