Ambiguous pledges leave large uncertainty under Paris climate agreement

June 06, 2017

Under the pledges made by countries under the Paris Agreement on climate change, greenhouse gas emissions could range from 47 to 63 billion metric tons of CO2 equivalent (GtCO2e) per year in 2030, compared to about 52 GtCO2e in 2015, according to a new analysis. That range has critical consequences for the feasibility of achieving the goal of keeping warming "well below 2°C" over preindustrial levels, according to the study published in the journal Nature Communications.

The pledges, known as National Determined Contributions (NDCs) lay out a roadmap of how individual countries will reduce their emissions, with the intention of adding up to a global emissions reduction sufficient to achieve the Paris targets. Yet the new study shows that these individual maps leave out key details that would enable policymakers to see if they are headed in the right direction.

"Countries have put forward pledges to limit and reduce their emissions. But in many cases the actions described in these pledges are ambiguous or imprecise," says IIASA researcher Joeri Rogelj, who led the study. For example, some pledges focus on improving "emissions intensity," meaning reducing the emissions per dollar of economic output, but assumptions about socioeconomic growth are often implicit or unknown. Other countries focus on absolute emissions reductions, which are simpler to understand, or propose renewable energy targets, which can be expressed in different ways. Questions also remain about how much land-use-related climate mitigation will contribute, such as reducing deforestation or preserving forests.

The study finds that the emissions implied by the current NDCs can vary by -10 to +20% around the median estimate of 52 GtCO2e/yr in 2030. A previous study, also led by IIASA, had found that that the emissions reductions set out in the NDCs would not put the world on track to achieve the Paris targets.

The new study confirms this finding. It shows in a quantitative way that in order to keep warming to below 2°C, countries should either increase the stringency of their NDCs by 2030 or consider scaling up their ambition after 2030 by a factor 4 to 25. If the ambition of NDCs is not further increased by 2030, the study finds no pathways for returning warming to 1.5°C by the end of the century.

"The new results allow us to more precisely understand what is driving the uncertainty in emissions estimates implied by the Paris pledges," says Rogelj. "With this information at hand, policymakers can formulate solutions to remediate this issue."

"This is the first global study to systematically explore the range of emissions outcomes under the current pledges. Our study allows us to identify the key contributors to the overall uncertainty as well as potential clarifications by countries that would be most promising to reduce the overall uncertainty," says IIASA Energy Program Director Keywan Riahi, a study coauthor.

The researchers find that uncertainty could be reduced by 10% with simple, technical clarifications, and could be further reduced by clearer guidelines for countries on building their NDCs. The study highlights the importance of a thorough and robust tracking process of progress made by countries towards the achievement of their NDCs and the Paris Agreement goals as a whole.
-end-
Reference

Rogelj J, Fricko O, Meinshausen M, Krey V, Zilliacus JJJ, Riahi K (2017). Understanding the origin of Paris Agreement emission uncertainties. Nature Communications. [doi: 10.1038/ncomms15748]

International Institute for Applied Systems Analysis

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.