Nav: Home

Open-source approach provides faster, better solubility predictions

June 06, 2017

WASHINGTON, D.C., June 6, 2017 -- The solubility of any given substance -- the measure of how well the substance dissolves into another substance referred to as the solvent -- depends on basic properties like temperature and pressure, as well as the chemical identities of the dissolved substance (the solute) and the solvent.

Predicting solubility is important to a variety of applications. In the pharmaceutical field, for example, it is crucial to know the solubility of a drug since it directly determines its availability to the body. The petroleum industry provides another example: Substances with low solubility can form scales or unwanted deposits in pipes or on drills, causing blockages and other big problems.

Despite the importance of predicting solubility, it is not an easy matter. One approach, using "brute force" simulations, requires long computing times. Other techniques, while faster, fail to predict accurate solubility values. This week in The Journal of Chemical Physics, from AIP Publishing, researchers report a new type of software that enables convenient solubility estimations of essentially any molecular substance over wide temperature and pressure ranges. The code makes use of readily available open-source software and is expected to be widely adopted.

Daan Frenkel of the University of Cambridge in the U.K. worked with colleagues Lunna Li, also in Cambridge, and Tim Totton, of British Petroleum, to develop the code.

"We made a conscious choice to use well-documented, freely available software because we wanted to make our approach available to anyone," Frenkel said. "A general-purpose tool to compute solubilities has been lacking for a long time. The underlying methodology was there, but nobody had actually created a working program."

The software developed by this group uses standard thermodynamic expressions that have been known since the mid-19th century, such as vapor pressure. The approach exploits the fact that when a solid or liquid phase are in equilibrium, their vapor pressures are equal. When a liquid or solid are heated, molecules escape and form vapor. This vapor pressure can be calculated using computer models.

For example, a lump of sugar dissolving in water: Sugar molecules exist either in a solid state -- the crystalline sugar lump -- or completely surrounded by water molecules once they've dissolved. The amount of sugar in each of the two phases, solid and solution, is determined by the energy required to move sugar molecules between those phases. The solubility can be calculated by computing the vapor pressure of the two phases and equating them.

To model the solid phase, the investigators used a model referred to as an Einstein crystal. In this model, non-interacting solute molecules are placed on a lattice and tethered to a lattice point with a mathematical spring. The vapor pressure of the crystal is computed by calculating the work needed to switch off the springs and switch on interactions between the tethered molecules.

To model a dissolved solute molecule, the investigators used a standard energy potential for the solvent in question, which was water in the examples used to test their software, and calculated the work in three steps. First, a cavity in the solvent is created. A solute molecule is then inserted into the cavity and, finally, the cavity is shrunk to the size of the solute molecule. This procedure eliminates a number of errors and produces accurate estimates of the vapor pressure and, thus, the solubility.

In this week's report, the investigators tested their code on naphthalene dissolved in water and predicted a solubility that compares well with experimental values. Future investigations will focus on extending the software so that it can handle larger solute molecules.
-end-
The article, "Computational methodology for solubility prediction: Application to the sparingly soluble solutes," is authored by Lunna Li, Tim Totton and Daan Frenkel. The article will appear in The Journal of Chemical Physics June 6, 2017 [DOI: 10.1063/1.4983754]. After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4983754.

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

American Institute of Physics

Related Water Articles:

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.
Our water cycle diagrams give a false sense of water security
Pictures of the earth's water cycle used in education and research throughout the world are in urgent need of updating to show the effects of human interference, according to new analysis by an international team of hydrology experts.
Water management helped by mathematical model of fresh water lenses
In this paper, the homeostasis of water lenses was explained as an intricate interaction of the following physical factors: infiltration to the lens from occasional (sporadic) rains, permanent evaporation from the water table, buoyancy due to a density contrast of the fresh and saline water, and the force of resistance to water motion from the dune sand.
The age of water
Groundwater in Egypt's aquifers may be as much as 200,000 years old and that's important to know as officials in that country seek to increasing the use of groundwater, especially in the Eastern Desert, to mitigate growing water stress and allow for agricultural projects.
Water that never freezes
Can water reach minus 263 degrees Celsius without turning into ice?
Peanuts that do more with less water
Researchers are studying peanut varieties to find a 'water conservation' trait.
Molecular adlayer produced by dissolving water-insoluble nanographene in water
Even though nanographene is insoluble in water and organic solvents, Kumamoto University and Tokyo Institute of Technology researchers have found a way to dissolve it in water.
Water-worlds are common: Exoplanets may contain vast amounts of water
Scientists have shown that water is likely to be a major component of those exoplanets (planets orbiting other stars) which are between two to four times the size of Earth.
Artificial intelligence saves water for water users associations
A research group at the University of Cordoba has developed a model based on artificial intelligence techniques that can predict how much water each water user will use.
In desert trials, next-generation water harvester delivers fresh water from air
UC Berkeley scientists who last year built a prototype harvester to extract water from the air using only the power of the sun have scaled up the device to see how much water they can capture in arid conditions in Arizona.
More Water News and Water Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab