Nav: Home

Research study gives new insight into how cancer spreads

June 06, 2017

A research study led by University of Minnesota engineers gives new insight into how cancer cells move based on their ability to sense their environment. The discovery could have a major impact on therapies to prevent the spread of cancer.

The research is published in Nature Communications, a leading research journal.

The researchers found that cells have the ability to sense the stiffness of their environment and their ability to move is dependent upon that environment. These environments range from stiff (bone tissue) to soft (fatty tissue) with a medium stiffness (muscle tissue).

"Cells are a little like the storybook character Goldilocks. They don't like their environment too hard or too soft--it needs to be just right or they won't move," said David Odde, a University of Minnesota biomedical engineering professor and Masonic Cancer Center researcher who led the study. "If we can trick cancer cells into believing it is not a good environment for migration, we can prevent the cancer cells from spreading."

On the flip side, Odde said the same research also could be used to improve regenerative medicine. "With adult stem cell therapy, we want to find the 'sweet spot' to encourage the cells to move to the damaged or unhealthy tissue to restore lost function," Odde said.

During their study, Odde and his colleagues compared cells from human brain cancer to mobile but normal cells from embryonic chick brains. They did five different experiments that included environments with six different stiffnesses. They also tested the effects of two different cancer drugs on the cell movements.

The cancer cells showed a much higher "sweet spot" stiffness, like Goldilocks preferring a firmer bed. The researchers slowed the cancer cells down in a petri dish in the lab by following the predictions of their computer models, which were based on an understanding the mechanics of the cancer cell movement.

Cells, it turns out, are like cars. They have motors that generate force, and a clutch to transfer that force to structures that grip the tissue along which they move. When the environment is stiff enough--like a paved road--they can move into higher gear, with the engine spinning faster and the clutch transferring more force to the parts that, like wheels, get more grip.

They found that the combination of the two drugs they tested inhibited the motor and clutch functions of cancer cells and therefore inhibited their movement.

"We brought an engineer's perspective to a biological problem that will hopefully have a medical benefit," Odde said. "We used a math and physics-based approach to building models and testing experimentally. This is not typical in cell biology, but it was effective for us."

Motor- and clutch-inhibiting drugs for humans are still in development, Odde said, but with further research they could prolong the lives of cancer patients.

In addition to applying the cell movement research to regenerative medicine, Odde said next steps include working to improve cancer vaccines that encourage cancer-fighting cells to easily make their way to the tumors.
-end-
The research was funded primarily by the National Institutes of Health (NIH) National Cancer Institute, including funding from the National Cancer Institute's Physical Sciences in Oncology Centers and federal stimulus funding from the American Recovery and Reinvestment Act. The research team also received funding from the National Science Foundation (NSF) Graduate Research Fellowship, University of Minnesota Department of Chemical Engineering and Materials Science William F. Ranz Fellowship and Bill and Triana Silliman Fellowship, University of Minnesota Informatics Institute Updraft Fund, University of Minnesota Institute for Engineering in Medicine, and the University of Minnesota Undergraduate Research Opportunities Program.

In addition to Odde, the team included University of Minnesota former and current students Benjamin L. Bangasser, Ghaidan A. Shamsan, Clarence E. Chan, Kwaku N. Opoku, Benjamin W. Schlichtmann, Jesse A. Kasim, and Benjamin J. Fuller; postdoctoral researchers Erkan Tüzel and Brannon R. McCullough; and Cleveland Clinic Brain Tumor and Neuro-Oncology Center researcher Steven S. Rosenfeld.

University of Minnesota

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...