Nav: Home

Neurodegenerative disease mechanism and potential drug identified

June 06, 2017

Two new studies of progressive, neurodegenerative diseases linked to defects in cells' mitochondria offer hope for developing a new biomarker for research and diagnostics, and a drug for treating such diseases, report researchers at the University of California, Davis.

Both studies, co-authored by biochemist Gino Cortopassi in the UC Davis School of Veterinary Medicine, have implications for Friedreich's ataxia, a rare, inherited disease that affects 6,000 people in the United States.

Friedreich's is characterized by progressive neurodegeneration in the spine, as well as muscle weakness, heart disease and diabetes.

Findings from the two studies are being published this week in the journal Human Molecular Genetics.

Mitochondrial diseases:

Friedrich's ataxia is one of several serious diseases caused by dysfunctional mitochondria -- microscopic structures inside the cell that generate the cell's chemical energy, and play a key role in cell growth, function and death.

In addition to Friedreich's ataxia, other mitochondrial diseases include Leber's optic neuropathy, myoneurogenic gastrointestinal encephalopathy, and myoclonic epilepsy with ragged red fibers -- complex names for unusual but devastating disorders.

There are currently no Food and Drug Administration-approved therapies for treating mitochondrial diseases, including Friedreich's ataxia.

Protein defect decreases mitochondria numbers:

Inherited deficiencies in the mitochondrial protein frataxin cause Friedreich's ataxia, but it has been unclear how the deficiency in this single protein leads to the death of neurons and degeneration of muscles.

One of the new studies shows that a loss of the frataxin protein causes a decrease in mitochondrial number in blood and skin cells from patients with Friedreich's ataxia. Mice with a deficiency in the protein also have fewer mitochondria.

There are two main applications of the new knowledge, Professor Cortopassi said.

"Knowing now that the frataxin deficiency causes a shortage of mitochondria, we and others may be able to use the number of mitochondria as a biomarker for determining the disease severity and progression in Friedreich's ataxia patients," he said. "Such a biomarker could also be used to evaluate the effectiveness of new drugs for treating the disease."

MS drug shown to increase mitochondria production:

In the second study, Cortopassi and colleagues focused on the drug dimethyl fumarate, or DMF, already approved by the FDA for treating adult patients with a relapsing form of multiple sclerosis as well as psoriasis, an autoimmune skin disease.

DMF is known to help prevent inflammation and protect cells from damage.

In this study, the researchers examined the effects of DMF on human fibroblast (skin) cells, mice and human patients with multiple sclerosis.

The researchers demonstrated that DMF dosing causes increased mitochondrial numbers in human skin fibroblasts, in mouse tissues and in humans. The researchers also showed that the drug enhanced mitochondrial gene expression.

"Taken together, these findings suggest that DMF, by increasing mitochondria, has the potential to lessen the symptoms of muscle diseases, which are caused at least in part by mitochondrial abnormalities," said Cortopassi, who for 25 years has focused on better understanding "orphan" mitochondrial diseases -- disorders so rare that no therapies have been developed for them.

In 2011 he established Ixchel Pharma in an effort to identify existing drugs and customize them for treating patients with Friedreich's ataxia and other mitochondrial diseases.

What others are saying:

The following comments are from researchers not involved with these two studies but knowledgeable about Friedreich's ataxia and other mitochondrial diseases:

"The studies are highly significant for several reasons. First they identify a novel disease mechanism. While defects in mitochondrial energy production in Friedreich's ataxia have been known for quite a long time, the loss of mitochondria associated with decreased frataxin provides a rational explanation for these observations. Second, changes in mitochondrial abundance will provide useful biomarkers to assess patients' responses to therapeutic trials. Third, and most important, the identification of DMF as a mitochondrial stimulator in Friedreich's ataxia is an important step forward in the search for effective therapies, providing proof of concept that modulation of the signals that tell the cell to make more mitochondria may offer unique opportunities to design effective drugs."

Giovanni Manfredi, physician and professor, the Brain and Mind Research Institute of Cornell University's Weill Cornell Medicine, New York City

"This represents groundbreaking work that provides an important contribution to understanding the pathology of both Friedreich's ataxia and mitochondrial diseases. The advances in these two papers are exciting because they suggest that a current drug could be used to treat FA and mitochondrial DNA diseases, for which there are few therapies. This work also shows the value of basic research in adapting current therapies to extend their range to treat currently devastating diseases."

Mike Murphy, principal investigator, MRC Mitochondrial Biology Unit, University of Cambridge, UK

"DMF is a well-known drug approved by regulatory agencies in both the U.S. and Europe and clinically used worldwide for many years. Thus, the finding that it stimulates mitochondrial biogenesis in multiple sclerosis patients is very important and provides great perspectives for the treatment of patients with the many rare disorders affecting mitochondrial function, including the devastating Friedreich's ataxia. Given the amount of time and money nowadays required for developing brand-new drugs, discovering a new use for a molecule for which detailed clinical information is already available clearly represents a major, if not the only, hope for people affected by an orphan disease."

Franco Taroni, physician and researcher, Carlo Besta Neurological Institute, Milan, Italy
-end-
Collaborators and funding:

Funding for both studies was provided by the National Institute of Neurological Disorders and Stroke, and the Friedreich's Ataxia Research Alliance.

In addition to Cortopassi, collaborators on the frataxin protein deficiency study were Mittal Jasoliya, Marissa McMackin and Chelsea Henderson, all of UC Davis, and Susan Perlman of UCLA.

Collaborating with Cortopassi on the DMF study were Genki Hayashi, Mittal Jasoliya and Sunil Sahdeo, all of UC Davis; and Francesco Saccà, Chiara Pane, Alessandro Filla, Angela Marsili, Giorgia Puorro, Roberta Lanzillo and Vincenzo Brescia Morra, all of the University Federico II in Naples, Italy.

Media contacts:

Gino Cortopassi
UC Davis School of Veterinary Medicine
530-754-9665 office, 530-304-6810 cell
gcortopassi@ucdavis.edu

Pat Bailey
UC Davis News and Media Relations
530-219-9640
pjbailey@ucdavis.edu

University of California - Davis

Related Multiple Sclerosis Articles:

New biomarkers of multiple sclerosis pathogenesis
Multiple sclerosis (MS) is a chronic debilitating inflammatory disease targeting the brain.
Using telemedicine to treat multiple sclerosis
Multiple sclerosis (MS) clinicians face continued challenges in optimizing neurological care, especially for people with advanced MS living in medically underserved communities.
Improving symptom tracking in multiple sclerosis
With a recent two-year, $833,000 grant from the US Department of Defense, kinesiology professor Richard van Emmerik and colleagues at the University of Massachusetts Amherst hope to eventually help an estimated 1 million people worldwide living with progressive multiple sclerosis by creating an improved diagnostic test for this form of the disease, which is characterized by a steady decrease in nervous system function.
An antibody-based drug for multiple sclerosis
Inserm Unit U919, directed by Professor Denis Vivien has developed an antibody with potential therapeutic effects against multiple sclerosis.
Four new risk genes associated with multiple sclerosis discovered
Scientists of the Technical University of Munich and the Max Planck Institute of Psychiatry have identified four new risk genes that are altered in German patients with multiple sclerosis.
PET detects neuroinflammation in multiple sclerosis
The triggers of autoimmune inflammation in multiple sclerosis (MS) have eluded scientists for many years, but molecular imaging is bringing researchers closer to identifying them, while providing a means of evaluating next-generation therapies for MS, say researchers introducing a study at the 2016 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging.
Scientists find genetic cause of multiple sclerosis
Researchers have discovered a rare genetic mutation that makes it probable that a person will develop multiple sclerosis (MS).
ANKRD55: A new gene involved in Multiple Sclerosis is discovered
The Ikerbasque researcher Koen Vandenbroeck, who heads the Neurogenomiks laboratory which reports to the Achucarro centre and the UPV/EHU-University of the Basque Country, together with other national and international groups, has shown that a genetic variant in the 5q11 chromosome, which is associated with susceptibility to developing multiple sclerosis, greatly regulates a gene known as ANKRD55.
Children with and without multiple sclerosis have differences in gut bacteria
In a recent study, children with multiple sclerosis had differences in the abundance of specific gut bacteria than children without the disease.
Rituximab is superior to fingolimod for certain patients with multiple sclerosis
A new study indicates that rituximab is more effective than fingolimod for preventing relapses in patients with highly active multiple sclerosis switching from treatment with natalizumab.

Related Multiple Sclerosis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...