Nav: Home

Hiding in plain sight: New species of flying squirrel discovered

June 06, 2017

For hundreds of years, a species of flying squirrel was hiding right under (actually, above) our noses.

A new study published May 30 in the Journal of Mammalogy describes a newly discovered third species of flying squirrel in North America -- now known as Humboldt's flying squirrel, or Glaucomys oregonensis. It inhabits the Pacific Coast region of North America, from southern British Columbia to the mountains of southern California. Until now, these coastal populations were simply thought to be the already-known northern flying squirrel.

"For 200 years we thought we had only had one species of flying squirrel in the Northwest -- until we looked at the nuclear genome, in addition to mitochondrial DNA, for the first time," said study co-author Jim Kenagy, professor emeritus of biology at the University of Washington and curator emeritus of mammals at the Burke Museum of Natural History & Culture.

Biologists used to classify the flying squirrels of California and the coastal Pacific Northwest as northern flying squirrels. It wasn't until lead author Brian Arbogast, associate professor of biology at the University of North Carolina Wilmington, and formerly a postdoctoral researcher at UW and the Burke Museum, looked closely at the genetics of flying squirrel specimens from the Burke's collections that it became apparent that they may be a different species. Flying squirrels collected since the early 1900s in the Pacific Coast region often looked smaller and darker than their counterparts from east of the Cascades.

Ultimately, it was DNA testing that revealed a third species unique to the Pacific Northwest.

The results of the DNA analyses were striking: they indicated that no gene flow was occurring between the Pacific Coastal form and the widespread, inland, continental form of the northern flying squirrel, even when two occurred together.

Because the new study shows that Humboldt's and northern flying squirrels both occur together at the same places within some parts of Western Washington and southern British Columbia, it is possible that future studies might reveal hybridization between these two species, even though this study did not find the two species interbreeding in the areas the research team examined.

Kenagy, Arbogast and other researchers spent years studying small mammals in the Northwest and how they distributed themselves in the western and eastern mountain ranges, as recently as the period following the last Ice Age. In some cases, the eastern and western mammals evolved into different species over the past million years or so.

"It was a surprising discovery," said Kenagy. "We were interested in the genetic structure of small mammals throughout the Pacific Northwest, and the fact that in other cases we were aware that two different species had evolved in Eastern and Western Washington."

The new genetic study clearly demonstrates that Pacific Coast populations of flying squirrels from southern British Columbia, southward through western Washington and Oregon, and in California, now include members of the newly named species, Humboldt's flying squirrel.

The Humboldt's flying squirrel is known as a "cryptic" species -- a species that was previously thought to be another, known species because the two look similar.

This new discovery of the Humboldt's flying squirrel is the 45th known species of flying squirrel in the world. What are now three species of flying squirrels in North and Central America are all small, nocturnally-active, gliding squirrels that live in woodland habitats. These creatures don't actually fly like bats or birds. Instead, they glide from tree to tree by extending furred membranes of skin that stretch from the wrist of the forearm to the ankle on the hind leg. Their feather-like tail provides extra lift and also aids in steering. The gliding ability of flying squirrels is remarkable; they are capable of gliding for up to 100 meters and can make sharp, midair turns by using their tail as a rudder and moving their limbs to manipulate the shape and tautness of their gliding membranes.

The squirrel specimens in the Burke Museum's collections -- and other natural history museums around the world -- are standing by for future researchers to learn more about these remarkable "new" creatures.
-end-
Co-authors are Katelyn Schumacher with the University of North Carolina Wilmington, Nicholas Kerhoulas with the University of Alaska Fairbanks and the University of Alaska Museum, Allison Bidlack with the University of Alaska Southeast and Joseph Cook with the University of New Mexico. The research was funded by the University of Washington.

For more information, contact Godinez at 206-616-7538 or burkepr@uw.edu.

University of Washington

Related Biology Articles:

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
Cell biology: Take the mRNA train
Messenger RNAs bearing the genetic information for the synthesis of proteins are delivered to defined sites in the cell cytoplasm by molecular motors.
Gravitational biology
Akira Kudo at Tokyo Institute of Technology(Tokyo Tech) and colleagues report in Scientific Reports, December 2016, that live-imaging and transcriptome analysis of medaka fish transgenic lines lead to immediate alteration of cells responsible for bone structure formation.
Biology's 'breadboard'
Understanding how the nervous system of the roundworm C. elegans works will give insights into how our vastly more complex brains function and is the subject of a paper in Nature Methods.
The use of Camelid antibodies for structural biology
The use of Camelid antibodies has important implications for future development of reagents for diagnosis and therapeutics in diseases involving a group of enzymes called serine proteases.
Misleading images in cell biology
Virtually all membrane proteins have been reported to be organized as clusters on cell surfaces, when in fact many of them are just single proteins which have been counted multiple times.

Related Biology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...