Nav: Home

Device designed to exploit scattering of light by mechanical vibrations

June 06, 2017

Researchers at the University of Campinas's Gleb Wataghin Physics Institute (IFGW-UNICAMP) in São Paulo State, Brazil, have theoretically developed a silicon photonic device that would enable optical and mechanical waves vibrating at tens of gigahertz (GHz) to interact.

The proposed device resulted from the projects "Nanophotonics in Group IV and III-V semiconductors" and "Optomechanics in photonic and phononic crystals", both supported by FAPESP. It was described in an article published in Scientific Reports, an online journal published by Springer Nature.

"Through computer simulations, we proposed a device that could exploit a mechanism for the scattering of light by mechanical vibrations, called Brillouin scattering, and could be transposed to photonic microchips," said Gustavo Silva Wiederhecker, a professor at IFGW-UNICAMP and principal investigator for the nanophotonics project above.

In recent years, Wiederhecker and his group at IFGW-UNICAMP have focused on this mechanism, which was initially described in 1922 by French physicist León Nicolas Brillouin (1889-1969). In Brillouin scattering, light, which consists of photons, interacts with elastic vibrations, which consist of phonons, at very high frequencies (tens of GHz) in a transparent medium.

It was impossible to exploit this effect efficiently until the 1960s, when US physicist Theodore Harold Maiman (1927-2007) invented the laser.

At that time, it was observed that the electromagnetic field of an intense beam of light transmitted along an optical fiber by a laser source induces acoustic waves that propagate along the material and scatter the light at a different frequency from the laser's.

"This light scattering mechanism is easy to observe in optical fibers, which can be hundreds of kilometers long, because it's cumulative," Wiederhecker said, meaning that it builds up as the waves travel along the fiber.

"It's harder to observe and exploit in an optomechanical device at the micrometer scale because of the tiny space in which the light circulates." Optomechanical devices simultaneously confine light waves and mechanical waves to permit interaction between them.

To overcome this size limitation with regard to light propagation, Wiederhecker and his group developed silicon disks with a diameter of approximately 10 microns (μm), equivalent to one tenth of the thickness of a human hair. The disks act as microcavities.

Using an optical fiber with a diameter of approximately 2 μm, the researchers coupled light to this system. The light is reflected from the edge of the material and spins around the disk cavity thousands of times over a few nanoseconds before dissipating.

As a result, the light remains in the cavity longer and thereby interacts more with the material, and the optomechanical effects are augmented. "It's as if the light is propagated over a much larger distance," Wiederhecker explained.

The problem is that such a microcavity does not allow light at any arbitrary frequency to be resonant (to propagate through the cavity), although it does enable the light originally emitted by the laser to propagate. "So you can't exploit the Brillouin scattering effect in these microcavities," he said.

Using computer simulations, the researchers theoretically constructed not a microdisk with a cavity but a system comprising two silicon microdisks with one cavity each. The disks are laterally coupled, and the distance between their cavities is tiny, of the order of hundreds of nanometers (a nanometer is one billionth of a meter). This system creates what is known as a frequency separation effect.

This effect slightly separates the frequency of the light scattered by the acoustic waves from the frequency of the light emitted by the laser, which is 11-25 GHz -- exactly the same as that of the mechanical waves - and ensures that the thousands of phonons (elementary excitations of acoustic waves) generated per second in this system (at rates ranging from 50 kHz to 90 kHz) can propagate in the cavities.

As a result, it is possible to observe and exploit Brillouin scattering in this micrometric system, according to Wiederhecker.

"We show that with a laser power of about 1 milliwatt - equivalent to the power of a laser pointer for use in a slide presentation, for example - it would be possible to observe the Brillouin scattering effect in a double-disk cavity system," he said.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Laser Articles:

The sharpest laser in the world
With a linewidth of only 10 mHz, the laser that the researchers from the Physikalisch-Technische Bundesanstalt (PTB) have now developed together with US researchers from JILA, a joint institute of the National Institute of Standards and Technology and the University of Colorado Boulder, has established a new world record.
Biggest X-ray laser in the world generates its first laser light
European XFEL, the biggest X-ray laser in the world, has generated its first X-ray laser light.
Where does laser energy go after being fired into plasma?
An outstanding conundrum on what happens to the laser energy after beams are fired into plasma has been solved in newly-published research at the University of Strathclyde.
Over-the-counter laser pointers a threat to eyesight
Some laser pointers that can be bought over the counter are unsafe -- to the point that they can cause blindness.
Introducing the disposable laser
Since lasers were invented more than 50 years ago, they have transformed a diverse swath of technology -- from CD players to surgical instruments.
A laser for your eyes
A team of the Lomonosov Moscow State University scientists and the Belarusian National Technical University has created a unique laser, which is a compact light source with wavelengths harmless to the human eye.
New laser to shine light on remote sensing
A revolutionary new type of laser developed by the University of Adelaide is promising major advances in remote sensing of greenhouse gases.
Laser beams with a 'twist'
Using geometric phase inside lasers for the first time, researchers find a way to change the orbital angular momentum of laser beams.
New laser achieves wavelength long sought by laser developers
Researchers at the University of Bath, United Kingdom have created a new kind of laser capable of pulsed and continuous mid-infrared emission between 3.1 and 3.2 microns, a spectral range that has long presented a major challenge for laser developers.
New laser achieves wavelength long sought by laser developers
Researchers at the University of Bath, United Kingdom have created a new kind of laser capable of pulsed and continuous mid-infrared (IR) emission between 3.1 and 3.2 microns, a spectral range that has long presented a major challenge for laser developers.

Related Laser Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.