Nav: Home

Coming out of their shells

June 06, 2017

Around 250 million years ago, terrestrial-bound turtles began to explore the aquatic environments, and with it, a profound, new ability first developed.

Breathable skin, made possible by the loss of their hard shells. Losing the hard shell is a feature that evolved independently in three turtle lineages during the Late Cretaceous, providing greater swimming speed and maneuverability.

And the loss of hard shells at different evolutionary branch points resulted in adaptive changes because of changes in respiration.  They could maintain aerobic respiration for longer periods of time, and sustain deeper dives.

Now, scientists Tibisay Escalona, and Agostinho Antunes from the CIIMAR research institute in Porto, Portugal, and Cameron Weadick from Sussex University in Brighton, United Kingdom have traced the origin of these adaptations to different genes that are part of the mitochondrial respiratory complex in soft shelled turtles.

"It's reasonable to hypothesize that turtle mitochondrial DNA-encoded proteins may have undergone adaptive evolutionary changes associated with the loss of shell scutes and the invasion of highly aquatic eco-physiological niches," said the authors.

Mitochondria, which are passed along solely from mothers to offspring, are known as the powerhouses of the cell, responsible for aerobic respiration and 95 percent of the cell's energy currency in the form of ATP.

The research team investigated patterns of evolution in the mitochondrial DNA (mtDNA) protein coding genes across 53 Cryptodiran turtle species (representing a total of 10 families), testing for adaptive or divergent patterns of mtDNA evolution associated with the evolution of soft-shells.

The researchers identified positively selected sites that occurred in the mitochondrial-encoded proteins of the oxidative phosphorylation system by using various models and mapped these mutations onto the three-dimensional structures of the proteins, and predicted the severity of these structural changes on respiratory function. 

They've shown that subtle amino acid changes can have large functional effects and saw the largest changes effecting complex one, the first and the largest domain of the OXPHOS pathway. Complex I, is responsible for an estimated 40 percent of the proton current that drives ATP synthase.

"Our data supports the notion that the adoption of highly aquatic lifestyles in soft-shelled turtles was associated with altered patterns of selection on mitochondrial function. Our analyses thus revealed that positive selection strongly affected mtDNA evolution along two (Trionychidae and Carettochelyidae) of the three lineages associated with the evolution of soft-shells, and that positive selection targeted multiple mtDNA genes in both cases," said the authors.

However, they did not see this adaptation in leatherback sea turtles. Why not? "This suggests that the evolution of a soft-shell in leatherbacks may have been linked to thermoregulation, not respiration, enabling the species to regulate heat gain and loss," said the authors.

Their findings highlight the valuable role of mitochondrial in the larger context of mitochondrial protein biochemistry, human diseases and turtle ecology.
-end-


Molecular Biology and Evolution (Oxford University Press)

Related Evolution Articles:

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
Guppies teach us why evolution happens
New study on guppies shows that animals evolve in response the the environment they create in the absence of predators, rather than in response to the risk of being eaten.
Undercover evolution
Our individuality is encrypted in our DNA, but it is deeper than expected.
More Evolution News and Evolution Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab