Nav: Home

A laser that smells like a hound

June 06, 2018

University of Adelaide researchers have created a laser that can "smell" different gases within a sample.

Applications for the new device lie not just in environmental monitoring and detecting industrial contamination, but may eventually be used to diagnose disease by "smelling" the breath.

The researchers liken the ability of the laser to differentiate between different gas compounds in a sample to the sensitive nose of a bloodhound. But rather than smell, the device uses patterns of light absorption to measure the composition of the sample.

From the University's Institute for Photonics and Advanced Sensing (IPAS), the researchers report in the journal Physical Review Applied that the laser can measure the amount of carbon dioxide in a gas sample in under one second, with high accuracy and precision.

"The ability to rapidly measure gas composition to such high accuracy is cutting edge," says lead author Sarah Scholten, PhD candidate in the University's School of Physical Sciences. "With further development, it opens the way for real-time and inexpensive monitoring and analysis that can be carried out in the field, or in the doctor's surgery, by non-specialist operators."

The device exploits a Nobel-prize winning technology, developed by US and German scientists, called an 'optical frequency comb'. This 'laser comb' generates millions of different light frequencies or colours at once.

The researchers pass this special light through a sample of gas where each gas molecule absorbs a distinctive set of colours. The pattern of light absorption is a unique fingerprint of the gas composition of the sample.

"This first work aims at atmospheric monitoring, however, the technique is broadly applicable and offers an avenue for near-universal concentration measurements," says Dr Chris Perrella, Postdoctoral Fellow.

The group now aims to use the laser comb to unravel the chemical composition of the exhaled breath - in this much more complex situation they hope to find tell-tale chemical signs that point to underlying disease. The ultimate goal is to use the laser as a screening tool - to discover a serious illness even before the patient is aware of the condition.
-end-
The research was led by IPAS Director Professor Andre Luiten and was funded by the Australian Research Council, Medical and Scientific Services Pty Ltd, the South Australian Premier's Research and Industry Fund and a South Australian Government Catalyst Research Grant.

Media Contact:

Sarah Scholten, PhD candidate, School of Physical Sciences, The University of Adelaide. Mobile: +61 (0)401 857 960, sarah.scholten@adelaide.edu.au

Professor Andre Luiten, IPAS Director, The University of Adelaide, Phone: +61 (0)8 8313 2359, Mobile: +61(0) 404 817 168, andre.luiten@adelaide.edu.au

Dr Chris Perrella, Postdoctoral Fellow, Institute for Photonics and Advanced Sensing, The University of Adelaide. Phone: +61 ())8 8313 2323, Mobile: +61 (0)424 544 035, chris.perrella@adelaide.edu.au

Robyn Mills, Media Officer, University of Adelaide. Phone: +61 (0)8 8313 6341, Mobile: +61 (0)410 689 084, robyn.mills@adelaide.edu.au

University of Adelaide

Related Laser Articles:

The sharpest laser in the world
With a linewidth of only 10 mHz, the laser that the researchers from the Physikalisch-Technische Bundesanstalt (PTB) have now developed together with US researchers from JILA, a joint institute of the National Institute of Standards and Technology and the University of Colorado Boulder, has established a new world record.
Biggest X-ray laser in the world generates its first laser light
European XFEL, the biggest X-ray laser in the world, has generated its first X-ray laser light.
Where does laser energy go after being fired into plasma?
An outstanding conundrum on what happens to the laser energy after beams are fired into plasma has been solved in newly-published research at the University of Strathclyde.
Over-the-counter laser pointers a threat to eyesight
Some laser pointers that can be bought over the counter are unsafe -- to the point that they can cause blindness.
Introducing the disposable laser
Since lasers were invented more than 50 years ago, they have transformed a diverse swath of technology -- from CD players to surgical instruments.
A laser for your eyes
A team of the Lomonosov Moscow State University scientists and the Belarusian National Technical University has created a unique laser, which is a compact light source with wavelengths harmless to the human eye.
New laser to shine light on remote sensing
A revolutionary new type of laser developed by the University of Adelaide is promising major advances in remote sensing of greenhouse gases.
Laser beams with a 'twist'
Using geometric phase inside lasers for the first time, researchers find a way to change the orbital angular momentum of laser beams.
New laser achieves wavelength long sought by laser developers
Researchers at the University of Bath, United Kingdom have created a new kind of laser capable of pulsed and continuous mid-infrared emission between 3.1 and 3.2 microns, a spectral range that has long presented a major challenge for laser developers.
New laser achieves wavelength long sought by laser developers
Researchers at the University of Bath, United Kingdom have created a new kind of laser capable of pulsed and continuous mid-infrared (IR) emission between 3.1 and 3.2 microns, a spectral range that has long presented a major challenge for laser developers.

Related Laser Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".