Nav: Home

Emerging frontiers in phenological research

June 06, 2019

As climate change looms, we urgently need to understand how ecosystems will respond. Plant phenology, or the timing of developmental events like flowering, offers a powerful lens to make sense of the changes we are likely to see. Phenology is both driven by climate and deeply impacts ecosystem functioning. The timing of trees leafing out, blooming, and fruiting are key events in ecosystems, and even small perturbations in this timing can have drastic, cascading effects across an ecosystem. A recent special issue of Applications in Plant Sciences titled "Emerging Frontiers in Phenological Research" presents several studies on the forefront of phenological research.

Traditional phenological studies involve highly trained botanists scoring plant phenological states for countless hours. A number of studies in this issue present tools for cutting down that laboriousness, allowing this research to scale up. As Dr. Elizabeth Ellwood, Research Fellow at La Brea Tar Pits and co-editor of this issue, explains, "Innovative tools presented here provide data users with improved methods for accessing, analyzing, and applying these datasets to timely research, including vegetation parameter estimates in climate models."

For example, the software package PhenoForecaster (Park et al., 2019) can predict flowering time of more than 2300 angiosperm species. "This lessens the need for years of fieldwork before analysis and enables other researchers, such as climate modelers, to readily work with phenology data," notes Dr. Ellwood. Similarly, imaging provided by PhenoCam (Richardson et al., 2019) can drastically reduce workload in phenological research by estimating phenology at the landscape scale.

Historical phenology data can provide insights into past climates that are otherwise difficult to reconstruct. As Dr. Ellwood explains, "Phenology, like weather, is quite variable, making it imperative to have long-term datasets to be able to discover patterns of change. Other data sources, for example observational records or data from satellite images, are unable to provide extensive historical information."

"The role of herbaria is foundational to historical records of plant phenology," Dr. Ellwood goes on to note. "Each herbarium specimen is unique and is direct evidence that a species existed at a certain place and time, and was collected in a certain vegetative and reproductive state. When taken together, herbarium specimens provide an unparalleled source of baseline, historical data." However, scoring phenological data from herbarium specimens is costly in terms of time and labor.

Fortunately, increasingly digitized herbaria collections (see Figure) make automated scoring practical, through the clever use of computer neural networks such as those introduced by Lorieul et al. (2019). These scores might be coarser than those created by manual scoring by trained botanists, but as Ellwood et al. (2019) show, for many applications and questions, the coarse phenological data produced by computer neural networks seem to produce only slightly weaker models than those produced with finer-scale, manually annotated data.

Similarly, as Pearson (2019) shows using simulated specimen data, finer-scale phenological data can be estimated from the kind of coarse scores produced by neural networks. "Modeling techniques, such as those employed by Pearson (2019), permitted the researcher to explore research questions through a methodology that was independent, though robust to, data on the physical specimens," explains Dr. Ellwood.

Another major obstacle to building large-scale phenological datasets is the difficulty of integrating scores from different sources. Phenology can be described in many ways, and phenological data from direct observation, landscape-scale imagery, and herbarium specimens can be difficult to aggregate and analyze due to these discrepancies. Fortunately, the Plant Phenology Ontology (PPO) provides a standardized, relational vocabulary to describe these phenological states. Brenskelle et al. (2019) updates this database to account for relationships between plants and the plant parts present in herbaria, making these data easier to integrate and paving the way for broad meta-analyses from multiple data sources.

Phenology closely tracks climate and also drives many ecological interactions, making phenological databases a crucial tool in understanding the ecology of climate change. The tools presented here offer computational approaches to allow phenology research to scale up. These big datasets are urgently needed to address the big questions of today. As Ellwood and colleagues note in this issue's introduction, "At landscape scale, even small changes in phenology can have substantial consequences."
The Applications in Plant Sciences special issue "Emerging Frontiers in Phenological Research" is available online at:

Ellwood, E. R., K. D. Pearson, and G. Nelson. 2019. Emerging frontiers in phenological research. Applications in Plant Sciences 7(3): e1234.

Articles in the issue:

Andrew, C., U. Büntgen, S. Egli, B. Senn-Irlet, J.-A. Grytnes, J. Heilmann-Clausen, L. Boddy, C. Bässler, A. C. Gange, E. Heegaard, K. Høiland, P. M. Kirk, I. Krisai-Greilhüber, T. W. Kuyper, and H. Kauserud. Open-source data reveal how collections-based fungal diversity is sensitive to global change. Applications in Plant Sciences 7(3): e1227.

Brenskelle, L., B. J. Stucky, J. Deck, R. Walls, and R. P. Guralnick. 2019. Integrating herbarium specimen observations into global phenology data systems. Applications in Plant Sciences 7(3): e1231.

Daru, B. H., M. M. Kling, E. K. Meineke, and A. E. van Wyk. 2019. Temperature controls phenology in continuously flowering Protea species of subtropical Africa. Applications in Plant Sciences 7(3): e1232.

Ellwood, E. R., R. B. Primack, C. G. Willis, and J. HilleRisLambers. 2019. Phenology models using herbarium specimens are only slightly improved by using finer-scale stages of reproduction. Applications in Plant Sciences 7(3): e1225.

Lorieul, T., K. D. Pearson, E. R. Ellwood, H. Goëau, J.-F. Molino, P. W. Sweeney, J. M. Yost, J. Sachs, E. Mata-Montero, G. Nelson, P. S. Soltis, P. Bonnet, and A. Joly. 2019. Toward a large-scale and deep phenological stage annotation of herbarium specimens: Case studies from temperate, tropical, and equatorial floras. Applications in Plant Sciences 7(3): e1233.

Panchen, Z. A., J. Doubt, H. M. Kharouba, and M. O. Johnston. 2019. Patterns and biases in an Arctic herbarium specimen collection: Implications for phenological research. Applications in Plant Sciences 7(3): e1229.

Park, I., A. Jones, and S. J. Mazer. 2019. PhenoForecaster: A software package for the prediction of flowering phenology. Applications in Plant Sciences 7(3): e1230.

Pearson, K. D. 2019. A new method and insights for estimating phenological events from herbarium specimens. Applications in Plant Sciences 7(3): e1224.

Richardson, A. D., K. Hufkens, X. Li, and T. R. Ault. 2019. Testing Hopkins' Bioclimatic Law with PhenoCam data. Applications in Plant Sciences 7(3): e1228.

Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America, a nonprofit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. APPS is available as part of the Wiley Online Library.

Botanical Society of America

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at