Nav: Home

Manipulating nanoscale light in nanocavity of scanning tunneling microscope junctions

June 06, 2019

Spatial resolution of optical microscopy and spectroscopy is determined by how much one can confine light in space, which is usually restricted to about half-micrometer at the best due to the diffraction limit. However, light can be confined into nanometer scale by using metallic nanostructures through excitation of localized surface plasmon resonance (LSPR). Having such "nanolight" at a sharp metallic tip is particularly useful because it can be used in scanning tunneling luminescence (STL) and scattering-type scanning near-field optical microscopy (s-SNOM) performing nanoscale imaging and spectroscopy to look at nanomaterials and even single molecules. However, precise manipulation of nanolight in nanoscale junction has remained an outstanding problem. Because the nature of nanolight (LSPR) is determined by the nanoscopic structure of the tip, its manipulation requires a fine processing technique at the nanoscale. In addition, nanolight confined into nanocavities is of key importance due to the strong enhancement effect of an electromagnetic field, which enables ultrasensitive nanoscale imaging and spectroscopy.

A research team at the Fritz-Haber Institute in Berlin, headed by Dr. Takashi Kumagai, now demonstrated that manipulation of nanolight spectrum can be attained by shaping accurately plasmonic gold tips with a focused ion beam (FIB) milling technique. As an exemplary demonstration, they produced a very sharp tip with a single groove on its shaft as shown in the scanning electron microscope picture. The spectral response of nanolight confined in the nanocavity formed by the grooved tip and an atomically flat silver surface was investigated by using STL that is the combination of electronic and optical spectroscopies using scanning tunneling microscopy. The STML spectra with the grooved tips exhibit a characteristic modulation resulting from Fabry-Pérot type interference of surface plasmon polaritons (SPPs) on the tip shaft as the standing wave formation is visualized in the electrodynamic simulation. The spectral modulation can be precisely controlled by the groove position on the shaft. They also demonstrated that the SPP Fabry-Pérot interference can be improved by optimizing the overall tip shape.

This work shows a great potential of the combination of scanning probe techniques and nano-fabrication of plasmonic tips using FIB in order to study the nature of nanolight and light-matter interactions in nanocavities, which are an important frontier of plasmonics and nanooptics. In addition, the FIB-fabricated plasmonic tips are generally applicable to s-SNOM techniques, thus paving the way for nanoscale imaging and spectroscopy with a high degree of accuracy. Moreover, spectral control of the intense near-field at the apex of plasmonic tips may open up new opportunities for the realization of coherent laser-triggered electron point sources for low-energy electron microscopy and holography techniques.
-end-


Japan Science and Technology Agency

Related Nanoscale Articles:

As electronics shrink to nanoscale, will they still be good as gold?
As circuit interconnects shrink to nanoscale, will the pressure caused by thermal expansion when current flows through wires cause gold to behave more like a liquid than a solid -- making nanoelectronics unreliable?
A joint venture at the nanoscale
Scientists at Argonne National Laboratory report fabricating and testing a superconducting nanowire device applicable to high-speed photon counting.
Bending diamond at the nanoscale
A team of Australian scientists has discovered diamond can be bent and deformed, at the nanoscale at least.
Creating a nanoscale on-off switch for heat
Researchers create a polymer thermal regulator that can quickly transform from a conductor to an insulator, and back again.
Magnetic tuning at the nanoscale
Physicists from the German research center Helmholtz-Zentrum Dresden-Rossendorf (HZDR) are working to produce engineered magnetic nanostructures and to tailor material properties at the nanoscale.
Scientists can now control thermal profiles at the nanoscale
Scientists have designed and tested an experimental system that uses a near-infrared laser to actively heat two gold nanorod antennae to different temperatures.
New study shows nanoscale pendulum coupling
In 1665, Lord Christiaan Huygens found that two pendulum clocks, hung in the same wooden structure, oscillated spontaneously and perfectly in line but in opposite directions: the clocks oscillated in anti-phase.
Research reveals liquid gold on the nanoscale
Swansea University researchers have discovered what liquid gold looks like on the nanoscale - and in doing so have mapped the way in which nanoparticles melt, which is relevant to the manufacturing and performance of nanotech devices such as bio-sensors, nanochips , gas sensors, and catalysts.
Nanoscale thermometers from diamond sparkles
The development of a novel, non-invasive technique that uses quantum light to measure temperature at the nanoscale will have immediate applications for both industry and fundamental scientific research, scientists say.
Hyperbolic metamaterials enable nanoscale 'fingerprinting'
Hyperbolic metamaterials are artificially made structures that can be formed by depositing alternating thin layers of a conductor such as silver or graphene onto a substrate.
More Nanoscale News and Nanoscale Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.