Nav: Home

Danger avoidance can be genetically encoded for four generations, say Princeton biologists

June 06, 2019

Princeton University researchers have discovered that learned behaviors can be inherited for multiple generations in C. elegans, transmitted from parent to progeny via eggs and sperm cells. The paper detailing this finding, by Rebecca Moore, Rachel Kaletsky and Coleen Murphy, appears in the June 13 issue of the journal Cell.

It's well known that an organism's characteristics are encoded in genes that are passed down from parent to progeny through the eggs and sperm of the germline. The inheritance of some traits is determined exclusively by whether the individual receives the dominant or recessive form of an associated gene from each parent. Other heritable traits are influenced both by genetic makeup and by factors such as nutrition, temperature or environmental stress, which can affect the expression levels of related genes. Features whose inheritance isn't driven exclusively by DNA sequence are termed "epigenetic" (the prefix "epi" means "on top of").

An organism's phenotype can change during its lifetime due to epigenetic mechanisms. For example, in the microscopic roundworm Caenorhabditis elegans, starvation or heat stress prompts animals to adapt to these conditions by varying the expression of multiple genes. At the level of the genome, these changes can be made durable by altering how tightly the DNA that encodes a gene is packed, thereby regulating its accessibility to RNA transcription machinery. Alternatively, cells can engage mechanisms that destroy or sequester protein-coding RNA transcripts. When these modifications are made in germ cells, they can be passed down to future generations in a phenomenon is known as transgenerational epigenetic inheritance. Studies have shown that C. elegans adaptations to starvation and heat stress can be inherited for several generations. Might more complex phenotypes, such as behavioral changes, also be passed down in this way?

"In their natural environment, worms come into contact with many different bacterial species. Some of these are nutritious food sources, while others will infect and kill them," said Murphy, a professor in Princeton's Department of Molecular Biology and the Lewis-Sigler Institute for Integrative Genomics. "Worms are initially attracted to the pathogen Pseudomonas aeruginosa, but upon infection, they learn to avoid it. Otherwise they will die within a few days."

Moore and her colleagues investigated whether C. elegans can convey this learned avoidance behavior to their progeny. They found that when mother worms learned to avoid pathogenic P. aeruginosa, their progeny also knew to avoid the bacteria. The natural attraction of offspring to Pseudomonas was overridden even though they had never previously encountered the pathogen. Remarkably, this inherited aversive behavior lasted for four generations, but in the fifth generation the worms were once again attracted to Pseudomonas. In another surprise, the researchers observed that inheritance of learned avoidance was not universal for all pathogenic bacteria; although mother worms could learn to avoid the pathogenic bacterium Serratia marcescens, which is less abundant than Pseudomonas in C. elegans' environment, this aversion was not passed down to offspring. Intrigued, the researchers set out to explore what controls transmission of P. aeruginosa avoidance behavior across generations.

The authors showed that C. elegans mothers must actually become ill from ingesting P. aeruginosa in order to transmit avoidance to future generations; exposure to odors emitted by the pathogen wasn't sufficient to provoke avoidance. Nonetheless, neuronal sensory pathways are important for inherited avoidance, because avoidance behavior in both mothers and their progeny was associated with upregulated expression of several neuronally-associated genes. Among these, elevated expression of the TGF-? ligand daf -7 in mothers was needed for progeny to inherit pathogen aversion. Moore and her colleagues found that daf-7 expression in a certain type of sensory neuron, ASI neurons, correlated strongly with inherited avoidance behavior.

"The process of inheriting this learned avoidance [also] requires the activity of small RNAs called piRNA," Murphy said. piRNAs have been implicated in other transgenerational epigenetic inheritance pathways in C. elegans, where they're thought to silence gene expression and indirectly regulate DNA packing. The researchers found that the piRNA-associated protein PRG-1, while not necessary for C. elegans mothers to learn avoidance of P. aeruginosa, was required for increased daf-7 expression in progeny, and for their inherited avoidance behavior. Whether piRNAs and PRG-1 operate primarily in the mother, the progeny, or both to promote inheritance of avoidance behavior isn't yet known.

Importantly, expression of daf-7 remains elevated in the ASI neurons of progeny for four generations, then returns to basal levels in the fifth generation, which is when the inherited avoidance behavior also disappears. As Murphy points out, although inheritance of avoidance behavior provides a survival advantage, it's also necessary for this avoidance behavior to eventually go away. That's because P. aeruginosa is only pathogenic at high temperatures; at lower temperatures, it's increasingly safe to eat, as are other Pseudomonas species. If the pathogenic threat is temporary, the eventual lapsing of inherited avoidance allows future generations to return to feasting on nutritious Pseudomonas.
-end-
"Transgenerational learned pathogenic avoidance is mediated by TGF-beta and the Piwi/PRG-1 Argonaute pathway" by Rebecca S. Moore, Rachel Kaletsky, and Coleen T. Murphy appears in the June 13 issue of Cell (DOI: 10.1016/j.cell.2019.05.024). The research was supported by the National Institute of General Medical Sciences of the National Institutes of Health (T32GM007388 and 1DP2OD004402-01), the Glenn Foundation for Medical Research (CNV1001899), and the Howard Hughes Medical Institute Faculty Scholar Program (AWD1005048).

Princeton University

Related Genes Articles:

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.
Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.
New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.
Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.
How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.
Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.
The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.
Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.
New genes on 'deteriorating' Y chromosome
Decoding Y chromosomes is difficult even with latest sequencing technologies.
Newly revealed autism-related genes include genes involved in cancer
Researchers in Italy have applied a computational technique that accounts for how genes interact, to find new networks of related genes that may be involved in autism spectrum disorder.
More Genes News and Genes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.