Nav: Home

New research shakes up the sloth family tree

June 06, 2019

New research on the evolutionary relationships between tree sloths and their extinct giant relatives is challenging decades of widely accepted scientific research.

A team of international researchers including scientists from the McMaster ancient DNA centre and the University of Montpellier, have reached almost precisely the same novel results, working independently, in two separate studies published today in the journals Current Biology and Nature Ecology and Evolution.

While the sloth's evolutionary tree was previously based almost exclusively on the study of anatomical features, or morphology, new molecular (DNA and protein) evidence appears to overturn a longstanding consensus on how the major group of sloths are related to one another.

The scientific community has long believed that modern tree-dwelling sloths evolved independently from their large ground-dwelling ancestors . But by using different tools - relying mitochondrial genomic evidence and on bone collagen teased from ancient and modern specimens--researchers discovered the ancient sloths may have been at home on both land and in the trees.

"Mining the fossil record for these organic residues helps us write new histories about sloth evolution and biogeography," says evolutionary geneticist Hendrik Poinar, director of the Ancient DNA Centre at McMaster and also a corresponding author on the paper published in Current Biology.

Poinar and his team used state of the art analysis of ancient DNA to sequence 10 extinct sloth mitogenomes, which included the iconic continental ground sloths Megatherium, Megalonyx, Mylodon and Acratocnus, the recently extinct Caribbean sloths Parocnus and Acratocnus, and all living tree sloths, the two-toed (Choloepus) and the three-toed (Bradypus).

The results have forced researchers to rethink the entire evolutionary relationships.

For example, the three-toed sloth, has long been regarded as being so anatomically different from other sloths that it was classified on its own, as a completely separate, evolutionary lineage.

But both the mitochondrial and protein evidence suggest that this is incorrect, and that amazingly, the three-toed sloth fits within Megatherioidea, a group that also includes the largest of all sloths, the elephant-sized ground sloth Megatherium.

Similarly, the two-toed sloth, was found to belong to another major group of sloths called the mylodontoids, whereas it had previously been placed within a very different group called the Megalonychidae, a family which also includes the extinct North American ground sloth Megalonyx as well as a number of island species that lived in the West Indies until a few thousand years ago.

"Our work demonstrates the power of ancient DNA to decipher evolutionary radiations whose species have been decimated by the latest megafaunal extinctions," says Frederic Delsulc, director of research at the Institute of Evolutionary Sciences, University of Montpellier. "This study reveals how little we know about morphological evolution and the new molecular phylogenetic framework provides an opportunity to better understand the underlying processes."

The combined molecular evidence suggests that the West Indian sloths diverged from the ancestor of both megatherioids and mylodontoids more than 30 million years ago and this means that the first sloths to reach the Greater Antilles or what we know today as the Caribbean islands may have entered them over a temporary land connection between these islands and South America.

In taxonomic terms, that makes these recently extinct species the closest relative or sister group of all other sloths (giant and small), whereas they had previously been regarded as a late-evolving group.

"Although the molecular results conflict with current paleontological views based on anatomical features, there can be only one history of life," says Ross MacPhee, a corresponding author and curator in the division of vertebrate zoology at the American Museum of Natural History.

"The job now is to reconcile these differing methods of inference, which means a lot more work on everyone's part. We are going to learn a lot, and that's exciting," he says.
-end-


McMaster University

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...