Nav: Home

Researchers spot mutations that crop up in normal cells as we age

June 06, 2019

Cell division is not perfect. As we get older, mutations often appear in genes in normal cells. Most of these mutated cells and their progeny -- called "somatic clones" -- have no effect on our health, but a tiny fraction can help trigger cancer growth or contribute to other conditions such as cardiovascular disease. A team led by scientists from the Broad Institute's Cancer Program and Massachusetts General Hospital (MGH) has now created a powerful new approach that detects mutations across many different types of normal cells by analyzing RNA sequencing data from normal tissues.

"This is the first study to analyze this landscape of gene mutations in normal cells across many human tissues," said Keren Yizhak, postdoctoral fellow and lead author on a Science paper presenting the work.

Other research groups previously examined such mutations in individual tissue types using DNA sequencing. Yizhak and her colleagues instead began with RNA sequencing data from the Genotype-Tissue Expression (GTEx) program, a long-term initiative sponsored by the National Institutes of Health that has collected a massive amount of data from many types of normal tissues donated by people who died of causes other than cancer.

"It's not easy to identify mutations from RNA, because there's a lot of 'noise' in RNA data, and all our tools have been developed and tuned for calling mutations in DNA," said Gad Getz, director of the Cancer Genome Computational Analysis Group at the Broad, professor of pathology and director of bioinformatics for MGH's Cancer Center and Department of Pathology, and senior author on the paper. "Keren developed a pipeline based on our DNA analysis tools but which analyzes RNA sequences, called RNA-Mutect, and added steps that reduce the number of false positives to a very low level."

By analyzing RNA sequences from 29 types of healthy tissues from 488 people in the GTEx database, "we found that 95 percent of the individuals had at least one tissue with mutations in it," Getz said. "That means that everyone is going around with these mutated cells."

The team recognized several patterns in the mutations they identified that were consistent with earlier studies. For instance, the investigators found that lung, esophagus, and sunlight-exposed skin -- all tissues with increased environmental exposure -- had more mutations than other tissues (aka, a higher "mutational burden"). Higher rates of mutation appeared not only among cells from older people but also among cell types that proliferate quickly.

Additionally, the RNA data showed that normal tissues harbored cells containing mutations in known cancer genes. "We expect that most of these clones would not ever become cancer; they grow but likely stop at some point," Getz said.

Among the questions raised by the work: Could such mutations affect efforts to detect cancer early? For example a promising detection method called "blood biopsies" searches the blood for scraps of DNA shed from tumor cells. If it turns out that normal cells also release DNA with cancer-related mutations into the blood, that could complicate such detection efforts, the scientists noted.

The team's research to date has been on "macroscopic" clones, ones large enough to generate readable amounts of RNA. More generally within this field of research, "looking at mutations in smaller clones, down to single cells, will be very interesting," Getz said. Another major challenge is to identify early events in the progression of various diseases. To that end, the National Cancer Institute has recently launched a new large-scale study of pre-cancerous lesions called the PreCancer Atlas.

"Somatic clone expression has been shown in other diseases that increase with age," Getz continued. "For example, there is an association between these clones in the blood and heart disease. We need to study all types of disease that increase with aging, and test what components derive from somatic clones or from other biological or environmental factors. This is an exciting direction of research -- just the beginning of understanding how the body ages."
-end-
Support for this study came from the Broad Institute-Israel Science Foundation partnership, the National Institutes of Health, Getz's funds at the Massachusetts General Hospital and other sources.

Broad Institute of MIT and Harvard

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at Radiolab.org/donate.