Nav: Home

Understanding the (ultra-small) structure of silicon nanocrystals

June 06, 2019

New research provides insight into the structure of silicon nanocrystals, a substance that promises to provide efficient lithium ion batteries that power your phone to medical imaging on the nanoscale.

The research was conducted by a team of University of Alberta chemists, lead by two PhD students in the Department of Chemistry, Alyx Thiessen and Michelle Ha.

"Silicon nanocrystals are important components for a lot of modern technology, including lithium ion batteries," said, Thiessen, who is studying with Professor Jonathan Veinot. "The more we know about their structure, the more we'll understand about how they work and how they can be used for various applications."

In two recently published papers, the research team characterized the structure of silicon nanocrystals more quickly and accurately than ever before, using a cutting-edge technique known as dynamic nuclear polarization (DNP).

"Using the DNP technology, we were able to show that larger silicon nanocrystals have a layered structure that is disordered on the surface, with a crystalline core that is separated by a middle layer," explained Ha, who is studying under the supervision of Assistant Professor Vladimir Michaelis. "This is the first time this has been documented in silicon nanocrystals."

Silicon nanocrystals have proliferated through the world of scientific research. From applications in developing ultra-high capacity batteries to the next generation of medical imaging at the cellular level, their potential is seemingly endless.

"Understanding the structure of silicon nanocrystals is very useful," explained Thiessen. "By thoroughly examining the structure, we build our understanding of the properties of the crystals, which can in turn be used to optimize their function."

"And this will allow us to tailor the silicon nanocrystals to whatever application or field we want to," added Ha. "This research can impact many different areas of research, including the development of more accurate medical imaging technology to new, more efficient batteries. These silicon nanocrystals are extremely versatile."

Both Thiessen and Ha are students in the Alberta/Technical University of Munich International Graduate School for Hybrid Functional Materials (ATUMS) program, which allows them to experience an international cross-disciplinary research environment ans conduct aspects of their research in Munich, Germany.
-end-
The first paper, "Silicon Nanoparticles: Are They Crystalline from the Core to the Surface?" was led by Thiessen and published in Chemistry of Materials (doi: 10.1021/acs.chemmater.8b03074). The second paper, "Endogenous dynamic nuclear polarization NMR of hydride-terminated silicon nanoparticles" was led by Ha and published in Solid State Nuclear Magnetic Resonance (doi: 10.1016/j.ssnmr.2019.04.001).

University of Alberta

Related Medical Imaging Articles:

Advanced medical imaging combined with genomic analysis could help treat cancer patients
Melding the genetic and cellular analysis of tumors with how they appear in medical images could give physicians new insights into how to best treat patients, especially those with brain cancer, according to a new study led by TGen.
Low doses of radiation used in medical imaging lead to mutations in cell cultures
Common medical imaging procedures use low doses of radiation that are believed to be safe.
Use of medical imaging
This observational study looked at patterns of use for computed tomography (CT), magnetic resonance imaging (MRI), ultrasound and nuclear medicine imaging in the United States and in Ontario, Canada, from 2000 to 2016.
Medical imaging rates continue to rise despite push to reduce their use
The rates of use of CT, MRI and other scans have continued to increase in both the US and Ontario, Canada, according to a new study of more than 135 million imaging exams conducted by researchers at UC Davis, UC San Francisco and Kaiser Permanente.
Two-in-one contrast agent for medical imaging
Magnetic resonance imaging (MRI) visualizes internal body structures, often with the help of contrast agents to enhance sensitivity.
Medical imaging rates during pregnancy
Researchers looked at rates of medical imaging (CT, MRI, conventional x-rays, angiography, fluoroscopy and nuclear medicine) during pregnancy in this observational study that included nearly 3.5 million pregnant women in the United States and Canada from 1996 to 2016.
Scientists discover new method for developing tracers used for medical imaging
University of North Carolina researchers discovered a method for creating radioactive tracers to better track pharmaceuticals in the body as well as image diseases, such as cancer, and other medical conditions.
Radiology publishes roadmap for AI in medical imaging
In August 2018, a workshop was held at the National Institutes of Health (NIH) in Bethesda, Md., to explore the future of artificial intelligence (AI) in medical imaging.
Study could lead to safer and cheaper 3D medical imaging
A new study led by The Australian National University (ANU) has discovered a promising way to significantly lower doses of X-rays that has the potential to revolutionise 3D medical imaging and make screening for early signs of disease much cheaper and safer.
Researchers aim to prevent medical imaging cyberattacks
Researchers and cybersecurity experts have begun to examine ways to mitigate the risk of cyberattacks in medical imaging before they become a real danger.
More Medical Imaging News and Medical Imaging Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.