Cast iron graphite shape, fine structure are keys to cheaper, faster machining

June 06, 1999

University Park, Pa. --- Penn State engineers have shown that the shape of the graphite flakes, as well as the microstructure, in cast irons influence the amount of cracking and chipping that occurs during the machining process used to make gears, engine blocks, and other finished parts.

Dr. Robert C. Voigt, professor of industrial engineering, says, "If you can increase the life of a cutting tool or reduce product breakage during manufacturing by using more consistently machinable cast iron, costs will go down. We think we have the first strong evidence that connects microstructure and graphite particle shape with machinability."

Penn State researchers detailed their study in a paper, "Influence of Graphite Morphology and Matrix Structure on Chip Formation During Machining of Gray Cast Irons," presented at the American Foundryman's Society meeting in St. Louis, Mo. in March.

The authors are Dr. Ruben Marwanga, research assistant and Fulbright Fellow; Voigt, and Dr. Paul H. Cohen, professor of industrial and manufacturing engineering.

The group looked at commercial grades of gray and ductile cast iron, using slow speed machining as well as a high-speed quick-stop-device. They used a high magnification video camera system to record the process and then examined the machined samples with optical and scanning electron microscopes.

Magnified 50 times in the research videotapes, the surface of the cutting tools resembles a plow turning soil as it machines the surface of the cast iron sample. The tapes clearly demonstrate that cracking occurs along the graphite flakes and that severe deformation occurs in the surrounding matrix structure. The longer the graphite flakes, the longer the fracture distance ahead of and below the cutting tool.

The research also revealed that fine free graphite exists at the tool/chip interface of all gray irons and performs an important lubrication role. The graphite at the interface forms a thin solid film that separates the tool from the work and reduces strain and friction. The result is lower tool/sample interface temperatures and enhanced machinability.

The researchers also found that the type of matrix or fine microstructure in which the graphite was embedded played a role in machinability. They examined typical cast iron microstructures, including ferrite, ferrite/pearlite, and fully pearlite, and found that the higher the amount of ferrite, the easier it is to machine.

Gray irons have different machining characteristics than ductile irons and leaded steels. Ductile irons are more plastic and form longer chips than gray irons. Leaded steels show a much higher ductility than ductile irons, longer deformation distances and the formation of continuous chips during machining.

Voigt notes that the researchers are currently forming a consortium of companies to further examine the role of graphite and structure on cast iron machinability. Their goal is a consistently machinable cast iron that will provide better performance when machined rapidly by automated machining cells. The research was supported, in part, by grants from Dura Bar Division of Wells Manufacturing Co., Woodstock, Ill.
-end-
EDITORS: Dr. Voigt is at 814-863-7290 or at rcv2@psu.edu by email

Penn State

Related Graphite Articles from Brightsurf:

Next-gen smartphones to keep their cool
Multilayered carbon material could be the perfect fit for heat management in electronic devices.

Ways to improve petroleum coke combustibility studied with presence of metal catalysts
The fixed fluidized bed technology is already widely used overseas, but is relatively new for the Russian oil industry.

Solvation rearrangement brings stable zinc/graphite batteries closer to commercial grid storage
A research team led by Prof. CUI Guanglei and ZHAO Jingwen from Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS) proposed an approach of solvation rearrangement that brings stable zinc/graphite batteries closer to commercial grid storage.

New advance in superconductors with 'twist' in rhombohedral graphite
An international research team led by The University of Manchester has revealed a nanomaterial that mirrors the 'magic angle' effect originally found in a complex man-made structure known as twisted bilayer graphene -- a key area of study in physics in recent years.

Serendipity broadens the scope for making graphite
Curtin University researchers have unexpectedly discovered a new way to make crystalline graphite, an essential material used in the making of lithium ion batteries.

Russian scientists identified energy storage mechanism of sodium-ion battery anode
Scientists unveiled pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries (SIB), a new promising class of electrochemical power sources.

Mysterious mechanism of graphene oxide formation explained
Natural graphite, used as the precursor for graphene oxide production, is a highly ordered crystalline inorganic material, which is believed to be formed by decay of organic matter.

Using Jenga to explain lithium-ion batteries
Tower block games such as Jenga can be used to explain to schoolchildren how lithium-ion batteries work, meeting an educational need to better understand a power source that has become vital to everyday life.

Skoltech scientists get a sneak peek of a key process in battery 'life'
Researchers from the Skoltech Center for Energy Science and Technology (CEST) visualized the formation of a solid electrolyte interphase on battery-grade carbonaceous electrode materials using in situ atomic force microscopy (AFM).

Ultrasonic technique discloses the identity of graphite
A group of researchers, led by Osaka University, created a high-quality defect-free monocrystalline graphite, and measured the elastic constant, demonstrating that the determined value of monocrystalline graphite was above 45 gigapascal (GPa), which was higher than conventionally believed.

Read More: Graphite News and Graphite Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.