Fighting diabetes: UD researchers move closer to chip-based control of 'smart,' implantable insulin pumps

June 06, 1999

BOSTON--An estimated 16 million people worldwide suffer wildly fluctuating blood-glucose levels, often resulting in serious medical complications or even death because their bodies don't produce the hormone insulin, which helps cells process sugar.

University of Delaware research may someday help Type I diabetes mellitus patients better control their blood-sugar levels using an implantable insulin pump, scientists said today during the Association for the Advancement of Medical Instrumention (AAMI) conference.*

Prof. Francis J. Doyle III and doctoral candidate Robert S. Parker say their mathematical commands for controlling sugar levels are simple enough to fit on a computer chip, making them compatible with a surgically implanted insulin pump. The UD algorithms-coupled with glucose sensors now in development by many different research teams around the world-could significantly improve implantable pumps currently being tested, according to Doyle.

"Our vision is for people with diabetes to enjoy a healthy lifestyle, unimpeded by a device hanging at their hip, and without the need for multiple needle pricks to monitor blood-sugar levels or to inject insulin," says Doyle, an associate professor in UD's Department of Chemical Engineering, who is collaborating with Prof. Nicholas A. Peppas of Purdue University.

Sponsored by Roche Diagnostics--maker of Accu-Chek blood-glucose monitoring systems--and by the National Science Foundation, the UD project was among a dozen presented during an AAMI session on efforts to mimic normal pancreas function with an implantable insulin pump. Researchers at the session, chaired by Jeffrey I. Joseph of the Artificial Pancreas Center at Thomas Jefferson University, described glucose sensors and insulin-delivery technologies emerging from academic, industrial and government laboratories.

An external insulin pump has been on the market since the early 1980s, providing patients with an option to periodic insulin injections, Parker says. In clinical trials, meanwhile, some 600 diabetic patients worldwide are using MiniMed Technologies' revolutionary implantable pump, which has not yet been approved by the U.S. Food and Drug Administration (FDA).

Compared to frequent insulin injections, Doyle says, pumps seem to provide patients with improved control of their blood-sugar levels, so that they're less vulnerable to diabetes-related health problems.

Smart pumps on the horizon?

But, existing implantable designs simply deliver a low dose of insulin on a continuous basis, Parker notes. Patients also can self-administer additional insulin before a meal.

"By developing glucose sensors and predictive algorithms for these devices," Parker says, "we hope to dramatically improve and automate the control of blood-sugar levels."

Highly precise control is important because sugar concentrations above the normal level of 70 to 120 milligrams of glucose per deciliter of blood (mg/dl) have been associated with liver damage, blindness and other medical problems. And, cells begin to starve when blood-sugar levels fall too low.

So, UD researchers are working on "a smarter brain for the next generation of implantable insulin pumps," Doyle says. "In the future, our system could fit on a computer chip, processing glucose sensor information, and then translating that data into pump action."

Predicting the body's insulin needs

Traditionally, mathematical commands or algorithms for controlling blood-sugar levels have been "like a thermostat-either on or off," Doyle says. "The classic approach has been a bang-bang type of algorithm," he added. "When sugar levels are high, these systems deliver a dose of insulin. When sugar is low, they turn insulin delivery back down."

Unfortunately, this approach isn't "meal-proof," Doyle says, and it doesn't reflect dramatic variations among individuals. In other words, "These algorithms can't predict and plan ahead for the increased blood-sugar levels that can occur after a diabetic patient eats," he explains.

As a result, he says, patients may experience many hours of very high or low sugar levels before returning to a normal state.

The UD system more precisely controls blood sugar by constantly predicting the patient's need for insulin. Based on a mathematical model of the human glucose-insulin system, the algorithms analyze data from past events to forecast future insulin requirements.

And, because the algorithms are "linear," or simplified to approximate the function of the gut, the pancreas and other portions of body systems, they could be maintained on a tiny computer chip, Doyle says.

His approach, based on "model predictive control with state estimation" (MPCSE) algorithms, effectively reduced peak glucose levels by 44 percent, in computer simulations, compared to algorithms published in scholarly literature.

The system also reduced by 80 percent the "overshoot," or degree to which blood-sugar levels rose above a targeted range of 81 mg/dl, compared to patients with uncontrolled diabetes, Parker says. Small delays in receiving data from glucose sensors didn't seem to impair the performance of the UD system, which demonstrated a settling time of about 4.5 hours.

Doyle predicts that "smart" implantable insulin pumps won't become available to patients for another three to five years, even with FDA approval. But, he says, research presented at the AAMI meeting confirms the viability of this promising new technology.

Someday, he says: "Automatically controlled, implantable insulin delivery systems will no longer be science fiction."
-end-
This research will be presented Sunday, June 6, 1999, between 8 a.m. and 4:30 p.m., as part of the AAMI Annual Meeting & Expo in Boston's Hynes Conference Center (R-2).

University of Delaware

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.