The world's most powerful NMR spectrometer

June 07, 2001

The most powerful, high-resolution nuclear magnet resonance (NMR) spectrometer ever constructed was delivered today to The Scripps Research Institute (TSRI). According to Peter Wright, Ph.D., Chairman, Department of Molecular Biology, the new NMR, referred to by the frequency at which it operates, 900 MHz, will become the centerpiece of one of the world's most prominent collections of NMR instruments.

Wright commented, "It's fantastic. The capabilities of this instrument take us to a new level."

The instrument is the first of its kind and has been several years in the making by its German manufacturer, Bruker Instruments, Inc.

TSRI is a leader in high-powered NMR instrumentation, with 10 instruments at or above 500 MHz. Wright continued, "It's a very big deal to have the first major instrument of this type in this city. It reinforces our position at the leading edge of molecular and structural biology."

NMR spectroscopy is a diagnostic tool for chemistry and biology; additionally, it forms the basis for the technique of magnetic resonance imaging (MRI) in medicine. In a research context, NMR provides atomic coordinates of a wide range of biologically important molecules in solution. This information enables scientists to determine the structure-function relationships of molecules that lie at the heart of understanding fundamental biological processes.

Determining the three-dimensional structures of proteins and nucleic acids provides important insights into the basic questions about how living organisms function and change, and how particular alterations can lead to human disease. Structural biology is seen by scientists as particularly important in today's research environment: while the genomes of humans and several other organisms have been solved, the structures of most of the proteins which the tens of thousands of genes encode remain a mystery.

In an NMR experiment, a sample in a long tube is inserted into the magnet, which consists of several superconducting coils surrounded by an outer dewar containing liquid helium. Atomic nuclei of molecules inside the tube give detectable responses to a radio frequency signal emitted by the inner coil at varying "resonance" frequencies.

A typical experiment involves scanning a range of frequencies and recording the responses of the atoms in the sample. These responses are influenced by the shape of the molecule in which the atoms reside - by their proximity to other atoms in the molecule. An NMR spectrum is unique for a particular molecule, and the structure of a molecule can be determined from its spectrum.

Scripps Research Institute

Related Biology Articles from Brightsurf:

Experimental Biology press materials available now
Though the Experimental Biology (EB) 2020 meeting was canceled in response to the COVID-19 outbreak, EB research abstracts are being published in the April 2020 issue of The FASEB Journal.

Structural biology: Special delivery
Bulky globular proteins require specialized transport systems for insertion into membranes.

Cell biology: All in a flash!
Scientists of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a tool to eliminate essential proteins from cells with a flash of light.

A biology boost
Assistance during the first years of a biology major leads to higher retention of first-generation students.

Cell biology: Compartments and complexity
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists have taken a closer look at the subcellular distribution of proteins and metabolic intermediates in a model plant.

Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.

Cell biology: Dynamics of microtubules
Filamentous polymers called microtubules play vital roles in chromosome segregation and molecular transport.

The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.

Kinky biology
How and why proteins fold is a problem that has implications for protein design and therapeutics.

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.

Read More: Biology News and Biology Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to