New study describes cancer's cheating ways

June 07, 2015

Cancer cells share certain traits with anti-social members of human society. They shirk community responsibilities and engage in behavior aimed at fulfilling their selfish needs at the expense of the greater good.

In a new study, Athena Aktipis, a researcher at Arizona State University's Biodesign Institute, along with her international colleagues, explore the ways in which cancers bypass the protective mechanisms used by multicellular forms to ensure their survival and wellbeing.

The paper identifies five foundations of multicellularity; maintenance factors present in all multicellular organisms across the tree of life. Cancer is shown to be highly adept at eluding all five foundations described, effectively "cheating" the multicellular regime for the cancer's own benefit. While such cheating pays dividends to the cancer cells, the results are often disastrous for the organism.

The study was conceived and largely written at the Institute for Advanced Study, Wissenschaftskolleg, in Berlin. The collaborative work was carried out over the course of a year by a diverse collective of evolutionary biologists and cancer biologists, wrestling with foundational issues in multicellularity and their relevance for cancer research.

The group's findings appear in a special comparative oncology issue of Philosophical Transactions of the Royal Society of London B.

"The idea of the five foundations really builds on decades of work in the field of multicellularity evolution," Aktipis says, referring to a subfield of evolutionary biology concerned with such questions as: how do cells come together to form higher level entities that have functions of their own; why have these entities evolved and what kinds of mechanisms enable the transition from unicellular to multicellular life?

The current examination of cancer and cancer-like phenomena across the spectrum of multicellular life is the first of its kind, providing researchers with a picture of cancer incidence across life as well as clues about how multicellular controls are cheated by aberrant cells. Insights gleaned through such research may point to better methods of diagnosing and treating cancer, a disease whose capacity for rapid evolution continues to thwart the best clinical efforts to control it.

Endless forms most beautiful

Multicellular life arose independently on multiple occasions over the course of earth's history, ultimately giving rise to an astonishing diversity of forms. To ensure essential cooperation and coordination of multicellular components, all such organisms have evolved sophisticated cancer suppression mechanisms to keep cells in check and ensure they are acting in concert.

The five foundations of multicellularity pinpointed in the study are: inhibiting cell proliferation, regulation of cell death, division of labor, resource transport and creation and maintenance of the extracellular environment. Without these mechanisms, multicellular organisms could not have evolved into the endless forms we see today. Such cooperative mechanisms are essential for the proper function and survival of many multicellular forms --from fungi to humans.

Cancer cells however have the capacity to break free of this multicellular tyranny over their behavior. As the authors note, research and clinical practice to date have focused primarily on the first two violations of the multicellular framework, namely limits to cell proliferation and regulation of cell death. In both cases, cancer appears capable of short-circuiting the built-in multicellular constraints, exhibiting the unchecked proliferation and growth characteristic of cancerous tumors.

Factors affecting the sheer number of cells, including cell proliferation and cell death may be thought of as demographic foundations of multicellularity. By contrast, the remaining three foundations of multicellularity can be considered economic factors: a division of labor involving specialized cell types, the transport of vital resources to places where they are needed and maintenance of the extracellular environment.

Aktipis and colleagues found that both demographic and economic cheating were found in all cases of cancer-like phenomena across the tree of life, pointing to the importance of these economic forms of cheating that involve resources, labor and the environment. The importance of these economic forms of cheating speak to the many parallels between multicellularity and cooperation in other forms of complex sociality including bee hives, ant colonies and even human groups.

Nature vs cancer

Evolution has strongly selected for the five foundational mechanisms underpinning successful multicellularity especially in large and long-lived organisms, and a number of specific examples have been the focus of intensive study. These include the presence of specialized genes like p53, which regulate the cell cycle and prevent cell proliferation unless precise conditions have been met. Misbehaving cells are targeted for destruction to help ensure the viability of multicellular systems.

The study compares the five foundations of multicellularity with so-called hallmarks of cancer, a set of underlying principles governing cancer behavior, proposed by researchers in 2000. According to the cancer hallmarks framework, cancer cells supply their own growth signals, resist inhibitory signals limiting their growth, resist programmed cell death (known as apoptosis), multiply indefinitely, stimulate blood vessels to supply tumors with nutrients (angiogenesis) and activate invasion of local tissues and the spread of cancer cells to distant sites (invasion and metastasis).

"For us, putting together the hallmarks of cancer with the foundations of multicellularity suggested that maybe these more economic forms of cheating have been neglected as components of cancer and contributors to cancer progression," Aktipis says. "Potentially we may be able to do better by creating diagnostics and measures of those types of economic cheating."

Unlike demographic cheating leading to unchecked cell proliferation and the development of tumor masses, economic cheating can present diverse manifestations, including lack of cell differentiation due to labor cheating, invasion of blood vessels due to resource cheating or a breakdown of the extracellular matrix due to environmental cheating.

The study notes that cheating in division of labor activities may be of particular relevance as it appears across the spectrum of multicellular life. Here, differentiation of cells into specialized types is deregulated--a central feature seen in tumor development, though not currently identified as a cancer hallmark.

There is also emerging evidence that processes of cancer cell cheating that involve monopolizing resources and exploiting the local environment may lead to selection pressure for cancer cells that are more mobile, thereby contributing to invasion and metastasis, another topic of Aktipis's research.

While the study found evidence of the five foundations of multicellularity across the tree of life, it is clear that mechanisms for suppressing cheating are not equally divided among all life forms. Animals appear to be more susceptible to cancers than plants and other multicellular organisms. This may be due to higher metabolic rates that leave animals more vulnerable to cheating in resource allocation and division of labor, while animal circulatory systems may enhance an organism's risk of metastasis.

More generally, this study found that cancer and cancer-like phenomena were more common in more complex forms of multicellularity compared to less complex forms and unicellular forms, suggesting that more complex forms of life might be more susceptible to cancer. The present study proposes that organizational complexity of multicellular bodies might enable more opportunities for cheating in complex cooperation - just as breaking rules or shirking labor might be easier in more complex organizations where there may be many more ways to cheat and it may be harder to detect.

Larger animals with greater longevity should theoretically display high cancer rates, due to increased numbers of cells that can potentially become cancerous as well as an increased number of cell divisions. Intriguingly, a number of such animals--including elephants and whales--have lower than expected cancer rates (a phenomenon known as Peto's Paradox), suggesting enhanced cancer-suppression capabilities.

An evolving discipline

"I think of it as the economics of multicellularity," Aktipis says. "How do the resources get where they need to go, how does the labor get done that needs to get done to make the body work, how does the shared environment get taken care of and maintained? These things are important and perhaps underappreciated aspects of maintaining an effective multicellular body and suppressing cancer that would otherwise evolve."

A greater focus on cancer's subversion of the economic foundations of multicellularity may give rise to innovative new strategies for identifying cancer, charting its trajectory and fashioning effective treatments.

To date, most cancer research has been carried out on humans, model systems like mice and rats, pets and some agricultural animals. Aktipis emphasizes that much more work in comparative oncology needs to be done to explore the rates of cancer across different forms of life and the details of the mechanisms used to suppress cheating.

"This paper is a call to action for the evolutionary biology, comparative genomic and evolution of multicellularity communities to really come together and to collect data that will allow us to answer some of these big, outstanding questions about cancer suppression," Aktipis says. "Together we can look to cancer across life for answers about the nature of cancer and new tools that can be used for cancer prevention in humans."
-end-
Athena Aktipis is a researcher in the Biodesign Institute's Center for Evolution and Medicine. Her forthcoming book is entitled: "Evolution in the Flesh: Cancer and the transformation of life," published by Princeton University Press.

Written by: Richard Harth
Science Writer: Biodesign Institute
richard.harth@asu.edu

Arizona State University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.