Nav: Home

Fully renewable energy system is economically viable in Finland in 2050

June 07, 2015

A fully renewable energy system, including all energy consuming sectors, is not only a possible but a viable solution for Finland, according to a new research. Researchers from Lappeenranta University of Technology (LUT) have investigated renewable energy system options for Finland in 2050. Results indicate that a fully renewable energy system is possible, and represents a competitive solution for Finland with careful planning.

In order to achieve the national greenhouse gas reduction targets for 2050, all sectors of the energy system need to be nearly emission free by 2050. Renewable energy system modelling shows that a fully renewable energy system featuring high shares of wind and solar energy includes smart interaction between the electricity, heating/cooling and mobility sectors. Power-to-Gas technology, i.e. converting electricity into gases such as hydrogen or synthetic natural gas, and energy storage solutions, such as batteries, heat storage and synthetic natural gas storage, also have a central role as enabling technologies.

The research includes for the first time the cost and quantified dimensioning of the future energy system for Finland, which means the capacities for each of the production, consumption and storage technologies were defined. The study proposes an economically and technically feasible architecture as first vision for a feasible future energy system for Finland that could be later developed to a roadmap.

This system includes installed capacity of solar power of up to 35 gigawatts and 44 gigawatts of wind power, an amount well above those seen in previous analyses, but supported by an established potential for wind and solar photovoltaics in Finland. This could create more than 166 TWh of electricity annually, approximately double the current level of final electricity consumption. The excess electricity would then be used to create synthetic fuels that can be consumed when needed for variety of purposes. In addition, electricity would directly replace fossil fuels in the provision of many energy services, such as heating and transport. These results include stationary battery storage capacities of up to 20 GWh, three million electric vehicles with respective storage capacities and power-to-gas capacities of up to 30 GW.

In the study total annual costs for 100% renewable energy systems are approximately 25 billion euros, slightly less than scenarios with lower shares of renewable energy and a business as usual scenario (26 billion euros). The same trend was found for scenarios with lower shares and higher prices of forest biomass, albeit at higher overall annual cost. By comparison, the current energy system has an annual cost of approximately 18 billion euros and is set to rise to 21 billion euros by 2020 using the same method of calculation.

"The main message is the option of a fully renewable energy system must be seen as a valid option for the future, rather than a radical alternative. Finland certainly has an abundance of renewable resources, such as solar, wind, bioenergy and already exploited hydropower, which can be sustainably utilised," says Christian Breyer, LUT's Professor for Solar Economy.

Modelling the components of future energy systems and calculating future costs are important because the Finnish energy system is at a crossroads. The current power generation system is aging, there are responsibilities to mitigate climate change and worries about fluctuating energy prices. At the same time, Finland has goals regarding national energy security as well as the need to retain a competitive industrial sector and meet the needs of a future society. Bioenergy alone cannot solve the energy supply problem.

The current study has concluded that flexibility will be a key, defining feature of future energy systems. By unlocking the full potential of all the flexibility available, more efficient and cost effective solutions can be found.

"Energy technologies will be a big part of these solutions, but let's not underestimate the impact that we can have on our own future. We have the opportunity to be more flexible energy consumers, and many individuals will become more active energy producers at the same time. We can become prosumers," states researcher Michael Child.

The researchers are part of LUT's Solar Economy Group. The research has been carried out in the NEO-CARBON ENERGY project. The results will be presented at the World Conference "Futures Studies Tackling Wicked Problems" in Turku on June 11th.
-end-
Neo-Carbon Energy is one of the Tekes strategic research openings carried out in cooperation with Technical Research Centre of Finland VTT Ltd, Lappeenranta University of Technology LUT, and University of Turku, Finland Futures Research Centre FFRC.

Additional information:

Jarmo Partanen, Director LUT School of Energy Systems, jarmo.partanen@lut.fi, +358 40 506 6564

Christian Breyer, Professor for Solar Economy, christian.breyer@lut.fi, +358 50 443 1929

Presentation slides: http://bit.ly/1KeKxnr

http://www.neocarbonenergy.fi

Video: https://www.youtube.com/watch?v=wcRuTnNYMqI

Lappeenranta University of Technology

Related Renewable Energy Articles:

Using fiber optics to advance safe and renewable energy
Fiber optic cables, it turns out, can be incredibly useful scientific sensors.
Renewable energy developments threaten biodiverse areas
More than 2000 renewable energy facilities are built in areas of environmental significance and threaten the natural habitats of plant and animal species across the globe.
Could water solve the renewable energy storage challenge?
Seasonally pumped hydropower storage could provide an affordable way to store renewable energy over the long-term, filling a much needed gap to support the transition to renewable energy, according to a new study from IIASA scientists.
Switching to renewable energy could save thousands of lives in Africa
New research from Harvard University and the University of Leicester finds that if Africa chooses a future powered by fossil fuels, nearly 50,000 people could die prematurely each year from fossil fuel emissions by 2030, mostly in South Africa, Nigeria and Malawi.
Scientists take strides towards entirely renewable energy
Researchers have made a major discovery that will make it immeasurably easier for people (or super-computers) to search for an elusive 'green bullet' catalyst that could ultimately provide entirely renewable energy.
Where to install renewable energy in US to achieve greatest benefits
A new Harvard study shows that to achieve the biggest improvements in public health and the greatest benefits from renewable energy, wind turbines should be installed in the Upper Midwest and solar power should be installed in the Great Lakes and Mid-Atlantic regions.
Croissant making inspires renewable energy solution
The art of croissant making has inspired researchers from Queen Mary University of London to find a solution to a sustainable energy problem.
Are we underestimating the benefits of investing in renewable energy?
Scientists have estimated the emissions intensity of carbon dioxide and other air pollutants from a major electricity distributor and highlighted key consequences - essential information for policymakers shaping decisions to reduce electricity system emissions.
Lighting the path to renewable energy
Professor Mahesh Bandi of Okinawa Institute of Science and Technology Graduate University (OIST) has co-developed a novel, standardized way of quantifying and comparing these variations in solar power.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
More Renewable Energy News and Renewable Energy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.