Neural stem cell transplants promote Parkinson's recovery in non-human primates

June 07, 2016

Human parthenogenetic stem cells, derived from unfertilized oocytes, can be used without destroying potentially viable human embryos to generate unlimited supply of neural stem cells for transplantation

Putnam Valley, NY. (June 6, 2016) - A multi-center team of researchers in the U.S. testing the potential of cell therapy for treating Parkinson's disease (PD) has found that grafting human parthenogenetic stem cell-derived neural stem cells (hpNSCs) into non-human primates modeled with PD promoted behavioral recovery, increased dopamine concentrations in the brain, and induced the expression of beneficial genes and pathways when compared to control animals not transplanted with stem cells.

The researchers also reported that the intracerebral injection and transplantation of hpNSCs was "safe and well-tolerated" for the two transplantation test animal groups with moderate to severe PD symptoms.

The results of their 12-month study will be published in a future issue of Cell Transplantation and is currently freely available on-line as an unedited, early epub at: http://www.ingentaconnect.com/content/cog/ct/pre-prints/content-CT-1518_Gonzalez_et_al

"Previous clinical studies have shown that grafted fetal neural tissue can achieve considerable biochemical and clinical improvements in PD, however the source of fetal tissue is limited and may sometimes be ethically controversial," wrote the researchers. "Human parthenogenetic stem cells offer a good alternative because they can be derived without destroying potentially viable human embryos and can be used to generate an unlimited supply of neural cells for transplantation."

According to the researchers, PD is characterized by a profound loss of function of the brain's basal ganglia, resulting in a loss of dopamine neurons. While there are drugs, such as Levodopa (L-DOPA), that increase dopamine function and provide temporary clinical improvement in some symptoms, the drug can also cause serious side effects. Cell-based therapies are offering promise as an alternative. Experiments using stem cells have offered benefits in pre-clinical studies, but have also provided "a wide variety of patient outcomes," said the researchers.

This study used hpNSCs because the cells demonstrate characteristics of human embryonic stem cells, but are not sourced from viable embryos, which may be destroyed in the process. Their previous studies with hpNSCs, said the authors, had shown that the cells could also be "chemically directed" to differentiate into multipotent neural stem cells and were able to be frozen for future use.

While the study was designed to determine whether the test animals showed greater improvement than the control group, researchers added that a longer outcome period than 12 months may have demonstrated continued improvement and divergence from controls.

"This was the first comprehensive study showing functional recovery after transplantation of human parthenogenetic neural stem cells in a non-human primate with moderate to severe PD symptoms," concluded the researchers. "The results of this and other studies support the clinical translation of hpNSCs and the approval of the world's first pluripotent stem cell-based therapy for treating Parkinson's disease."

"The use of neural stem cells derived from human parthenogenic cells may be a new avenue for treating a variety of conditions," said Dr. Paul Sanberg, distinguished university professor at the University of South Florida in Tampa Florida and co-editor-in-chief of Cell Transplantation. "The study showed evidence of safety in using these cells, which is an improvement upon previous stem cell therapies that have shown some lineages may result in tumor formation. A follow-up study that further assesses the clinical potential of this approach for functional improvement may prove promising in future treatments for Parkinson's disease."
-end-
Contact:

Dr. Russell Kern
International Stem cell Corporation
5950 Priestly Dr., Carlsbad, CA 92008, USA
Email: rk@intlstemcell.com
Tel: (760) 651-1247

Citation: Gonzalez R, Garitaonandia I, Poustovoitov M, Abramihina T, McEntire C, Culp B, Attwood J, Noskov A, Christiansen-Weber T, Khater M, Mora-Castilla S, To C, Crain A, Sherman G, Semechkin A, Laurent LC, Elsworth JD, Sladek J, Snyder EY, Redmond DE Jr, Kern RA. Neural stem cells derived from human parthenogenetic stem cells engraft and promote recovery in a nonhuman primate model of Parkinson's disease. Cell Transplant. Appeared or available on-line: May 20, 2016.

The Co-Editors-in-Chief for CELL TRANSPLANTATION are at the Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA and the Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact: Paul R. Sanberg at psanberg@health.usf.edu, Shinn-Zong Lin at shinnzong@yahoo.com.tw, or Associate Editor Samantha Portis at celltransplantation@gmail.com

Cell Transplantation Center of Excellence for Aging and Brain Repair

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.